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Executive Summary  
Population censuses have never been and never will be perfect. The 2020 Census was not likely perfect, 

either. The challenges and obstacles to conducting the 2020 Census were numerous and varied—from 

its politicization to the pandemic—and accuracy and fairness were likely affected.  

Questions and concerns have been raised about the quality of the 2020 Census and whether the 

data will be as accurate as previous censuses (GAO 2020c; Thompson 2021). The goal of the Urban 

Institute’s study was to address such questions about quality and provide additional data about the 

2020 Census’s accuracy and fairness. Urban created an innovative methodology—a simulation of the 

2020 Census—to better understand the decennial census’s performance. 

Exploring the 2020 Census’s Accuracy and Utility 

To offer additional insights on the 2020 Census’s accuracy and utility, the Urban Institute constructed a 

person-level microsimulation model to explore these questions. A microsimulation model allows us to 

simulate different plausible scenarios for miscounts and fairness in the 2020 Census to understand how 

factors may influence its accuracy and corresponding implications for political representation and 

allocation of federal resources.  

In this case, our “what if” scenarios explore what both a simulated 2020 Census count and a 

hypothetical full count could look like for the United States by geography and demographics, as well as 

scenarios for apportionment and Medicaid funding.  

This novel approach creates plausible 2020 Census counts and then tests them under various 

evidence-based conditions. As the findings in this report demonstrate, these data serve as an additional 

check on the quality of the census count and further elucidate the real implications of an imperfect 

2020 Census for the nation over the next decade. Specifically, we show the following: 

 The 2020 Census likely had a net undercount—disproportionately larger for specific groups 

and places—which suggests less accuracy than in the 2010 Census. 

 Such undercounts have implications for the fair allocation of funding and congressional 

representation across the states. 

 Urban’s microsimulation model illustrates how a hypothetical full count would produce fairer 

results. 



 v i  E X E C U T I V E  S U M M A R Y  
 

What Factors Contribute to the Final Count’s Accuracy 
and Fairness? 

The past decade was marked by internal and external factors that have implications for the count. They 

include demographic change in the US, the political climate, the COVID-19 pandemic, natural disasters, 

and the resulting operational changes made to the 2020 Census to account for changing times and 

realities.  

Events and decisions in the decade leading up to 2020 Census Day may have had more impact on 

the final counts than in previous decades. Traditionally hard-to-count groups increased as a share of the 

population. Precensus funding shortfalls at key times limited the testing of new census procedures, and 

late disputes over census content exacerbated uncertainty. Then the pandemic affected living 

arrangements, complicated in-person follow-up counts, and delayed postenumeration data cleaning and 

other processes.  

This report describes the events leading up to Census Day, the prolonged period of fieldwork and 

data processing because of the pandemic, and how these factors contribute to the final count’s accuracy 

and fairness. The challenging environment in which the 2020 Census was conducted suggests the need 

for additional benchmarks—such as Urban’s microsimulation model—to assess the 2020 Census’s 

quality, accuracy, and fairness. 

Estimating Census Counts, Testing Scenarios, and 
Exploring Outcomes 

Urban created the unique data presented in this report for this project as an important benchmark to 

assess the quality of the 2020 Census. They were created in a two-step process. First, we projected the 

US population as of April 1, 2020, or Census Day. Second, we adjusted our projected population with 

known factors likely to affect the census and tested two scenarios: a simulated 2020 Census and 

hypothetical full count. We then explored potential outcomes, such as apportionment and the 

allocation of federal Medicaid funding. 

This study is based on the best data available and is grounded in robust projections and 

microsimulation methodologies. However, as is true with any data and analyses, limitations exist and we 

urge caution in interpreting the findings. 
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The undercount was likely not as severe as expected, but who was undercounted and 

overcounted varies. Our simulation of the 2020 Census finds the following:  

1. There likely was an overall 0.5 percent net undercount of the US population. Although 

different from the 2010 count, which had nearly perfect net accuracy, it was perhaps not as 

severe an undercount as some have feared.  

2. Considerable variation exists in who was undercounted and overcounted overall in the 2020 

Census. Net accuracy is important, but fairness also matters. 

» We find that the true total populations of Mississippi and Texas were undercounted in our 

simulated 2020 Census by 1.3 and 1.28 percent, respectively, while Minnesota’s population 

was net overcounted by 0.76 percent. Such differences matter for these states for the next 

decade—Mississippi and Texas residents will receive less of their fair share of federal 

funding for infrastructure, health care, and children’s programs. In contrast, Minnesota 

residents will receive more.  

» For example, we find in our simulations that if the residents had been counted accurately in 

the 2020 Census, Texas would receive over $247 million more and Minnesota would 

receive $156 million less in 2021 federal Medicaid reimbursements. A fair and accurate 

census impacts people’s well-being, and these outcomes can be disparate across the nation.  

3. Those hardest to count in recent decennial censuses were again likely undercounted in the 

2020 Census. For each hardest-to-count group, equity issues arise with the count’s fairness, 

how resources will be distributed, and who will miss out on their fair share of political 

representation and funding: 

» Black and Hispanic/Latinx people had a net undercount of more than 2.45 and 2.17 

percent, respectively, in our simulated 2020 Census.  

» Young children, or those younger than age 5, were likely to be net undercounted by 4.86 

percent. 

» Nationwide, renters were likely to be undercounted by 2.13 percent overall.  

» Households with a noncitizen present were likely undercounted by 3.36 percent overall.  

Counting the nation’s population fully is becoming increasingly complicated. Innovations are 

needed to better understand the quality of the census, its fairness, and its implications for the following 

decade.  
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It is impossible to change the outcomes of the 2020 Census, but with adequate planning and 

innovation, the 2030 Census can be improved for the hardest-to-count groups and places. These efforts 

require us to collectively recognize how critical it is to invest in the decennial census and value it as a 

core component of our democracy. 
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Simulating the 2020 Census 
Population censuses—including decennial censuses conducted in the US—have never been and never 

will be perfect. Recent history points to examples of imperfections in enumerating the country. The 

1990 Census had such notable flaws in miscounts by race that a statistical adjustment to boost accuracy 

was attempted and then rejected by the US Supreme Court.1 In 2010, the census was touted as highly 

accurate because its count came within a fraction of a percentage point of an independently generated 

survey-based estimate. Yet this was the propitious result of counterbalancing about 10 million people 

who were erroneously included with about 10 million people who were omitted overall.2 Further, 

accuracy in 2010 came at the expense of fairness; those who were overcounted were more often white, 

while those undercounted were more often people of color. 

The 2020 Census was not likely perfect either. The challenges and obstacles to conducting the 2020 

Census were numerous and varied—from its politicization to the pandemic—and its accuracy and 

fairness were likely affected. Our previous research offered a sense of the magnitude of possible 

miscounts in the 2020 Census under milder challenges than what unfolded (Elliott et al. 2019). In that 

research, we showed that historically undercounted groups, including Black, Hispanic/Latinx, and young 

children were at greater risk of not being enumerated in 2020 than their counterparts. 

Because no census has ever been perfectly accurate, the issue is not whether accuracy was achieved, 

but its utility for specific purposes such as apportionment and allocation of federal resources. At 

present, many researchers are investigating the data quality of the 2020 Census to better understand 

its accuracy and its subsequent utility. Since April 2021, the US Census Bureau has released various 

operational measures that indicate the quality of the data collection efforts,3 and outside researchers, 

including an American Statistical Association task force, independently reviewed these quality metrics 

(ASA 2021). Even with such scrutiny, the magnitude of inaccuracies in the 2020 Census can never be 

known with certainty and will undoubtedly vary by geography and subpopulations. The need for 

additional research on this topic is considerable. 

To offer additional insights on the 2020 Census’s accuracy and utility, Urban constructed a person-

level microsimulation model to explore these questions. A microsimulation model allows us to simulate 

different plausible scenarios for miscounts and fairness in the 2020 Census to understand how factors 

may influence its accuracy and corresponding implications for political representation and allocation of 

federal resources.4 In contrast to others’ work analyzing data quality, this is a novel approach that 

creates plausible 2020 Census counts and then tests them under various evidence-based conditions. As 

the findings in this report demonstrate, these data serve as an additional check on the quality of the 
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census count and further elucidate the real implications of an imperfect 2020 Census for the nation 

over the next decade. Specifically, we show the following: 

 The 2020 Census likely had a net undercount—disproportionately larger for certain groups and 

places—which suggests less accuracy than in the 2010 Census. 

 Such undercounts have implications for the fair allocation of funding and congressional 

representation across the states. 

 Urban’s microsimulation model illustrates how a hypothetical full count would produce fairer 

results. 

BOX 1 

Glossary 

Throughout this report, we use technical terms—some also used by the US Census Bureau—which we 

describe below. 

 Administrative records. These are data sources, typically pulled from other federal sources, that 

will be used to supplement address and resident information on the 2020 Census when there are 

information gaps or when households do not respond. 

 Enumeration. This is the count of people, households, firms, or other important items in a 

geographic level at a particular time.  

 Erroneous enumerations (or overcounts). These are people or housing units who were counted 

but should not have been enumerated. This includes counting the same person at two different 

locations, a household counting a person who died before or was born after Census Day, or the 

inclusion of vacant or short-term housing units (such as vacation rentals).  

 Federal Medical Assistance Percentage (FMAP). This is the federal funding formula used to 

determine the percentage of each state’s expenditures on medical programs that will be 

reimbursed by the federal government. It is a ratio of per capita state income to per capita total 

US income, which both depend on census counts. 

 Imputation. This is the process of assigning data, through statistical procedures, when they are 

missing. This is one of the last data-processing steps before the census is finalized.  

 Internet self-response (ISR). This option was available on the 2020 Census for residents to 

answer questions online. The Census Bureau prioritized the “Internet First” mode in the 2020 

Census, encouraging responses to be submitted online rather than by phone or paper form. 

 Microsimulation model. This is a computer program that mimics the operation of government 

programs and demographic processes on individual (i.e., people and households) members of a 
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population to estimate how demographic, behavioral, and/or policy changes might affect these 

members and better understand the effects of current programs. 

 Nonresponse follow-up (NRFU). This is the period during decennial census operations when field 

staff, like enumerators, are sent to nonresponsive residences to conduct the count in-person.  

 Omissions (or undercounts). These are people and households that should have been counted 

but for various reasons were missed in the final census count. 

 Post enumeration survey (PES). This survey is part of the Census Coverage Measurement (CCM) 

program conducted after the 2010 Census to understand how successful the census was in 

counting the American public. 

Urban’s data and analytic scenarios used in the report are as follows: 

 Initial projections. Urban created projected data for the entire US population on April 1, 2020, 

based on US Census Bureau data. 

 Simulated 2020 Census. This scenario is Urban’s simulation of the 2020 Census that accounts for 

known measurement limitations that could promote miscounts and applies adjustments for such 

factors to Urban’s initial projections.  

 Hypothetical full count. This scenario takes our simulated 2020 Census and eliminates omissions 

and removes any erroneous enumerations. It assumes no missing or duplicated people in the 

2020 Census count. 

 Official 2020 Census counts. We refer to published resident population and apportionment 

census counts for the nation and states that were released on April 26, 2021, from the Census 

Bureau compared with Urban’s data. 

 

The State of the 2020 Census 

Censuses are not conducted in perfect worlds; perfect censuses are impossible. Questions of accuracy 

and fairness always emerge with the release of final counts, and the 2020 Census was no exception. 

Court cases were launched in advance of the first release of 2020 Census numbers challenging its 

accuracy.5 What matters, however, is not that a perfectly executed census occurred, but that the 

magnitude of likely errors is tolerable and that resulting counts have utility for their intended purposes.  

Events that occurred and decisions that were made in the decade leading up to Census Day on April 

1, 2020, may have had more impact on the final counts than in previous decades. Traditionally hard-to-

count groups increased as a share of the population. Precensus funding shortfalls at key times limited 
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the testing of new census procedures, and uncertainty was exacerbated by late disputes over census 

content. Then the pandemic affected living arrangements, complicated in-person follow-up counts, and 

delayed postenumeration data cleaning and other processes.  

In this section, we describe the events leading up to Census Day, the prolonged period of fieldwork 

and data processing because of the pandemic, and how these factors contribute to the accuracy and 

fairness of the final counts. The challenging environment in which the 2020 Census was conducted 

suggests the need for additional benchmarks—such as Urban’s microsimulation model—to assess the 

2020 Census’s quality, accuracy, and fairness. 

Factors Affecting the 2020 Census Count 

The past decade was marked by several factors—both external to the census and driven by operational 

changes within it—that have implications for the count’s completeness and fairness. They include 

demographic change in the US, the political climate, the COVID-19 pandemic, natural disasters, and the 

resulting operational changes made to the 2020 Census to account for changing times and realities. 

DEMOGRAPHIC CHANGE 

Since the 2010 Census, the United States has changed in ways that affect the overall accuracy and 

fairness of the census counts. Data from the intervening decade suggest that there have been shifts in 

the population that likely affected self-response and data quality in the 2020 Census; this is especially 

important given what we know about those who have historically been the hardest to count (GAO 

2018). Demographic changes such as an aging population, greater racial/ethnic diversity, shifts in 

noncitizens, and lower rates of homeownership could contribute to differences in the count regardless 

of other factors. We document demographic changes here and why they were factored into the 2020 

Census projection data developed for this study. 

Since 2010, the average age of the US population has increased.6 Historically, those ages 50 and 

older have had higher percentages of overcounts in the census and those younger than age 5 have been 

historically undercounted (Fernandez, Shattuck, and Noon 2018; O’Hare 2015). On balance, a shift to 

an older population in the US in 2020 would have produced a smaller net undercount for the overall US 

population but not necessarily a fairer count if children continued to be missed at higher rates. 

Between 2010 and 2020, the US also became more racially and ethnically diverse.7 This has 

implications for the 2020 Census because historically households with a non-Hispanic/Latinx white 

head of household have had higher percentages of overcounts and lower percentages of being missed 
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by the census, compared with Hispanic/Latinx, non-Hispanic/Latinx Black, Asian and Pacific Islander, 

and American Indian and Alaska Native households (Elliott et al. 2019). For these reasons, we expect 

greater racial/ethnic diversity likely contributed to a larger net undercount for the overall US 

population. 

Finally, homeownership decreased slightly from 2010 to 2020.8 Census researchers have found 

that economically advantaged homeowners have the highest self-response rates, including by the 

internet (Baumgardner, Griffin, and Raglin 2014). Further, renters are often noted as among the hardest 

to count (GAO 2018). So a shift away from homeownership could have contributed to a larger net 

undercount in the 2020 Census.  

POLITICIZATION OF THE CENSUS 

Political discourse about immigration, including attempts to add a citizenship question, may have 

affected people’s willingness to participate in the 2020 Census. As early as September 2017, 

researchers within the US Census Bureau found increased reluctance to participate in research 

activities amid anti-immigration policies and rhetoric.9 This included the Muslim Ban, dissolution of the 

DACA (Deferred Action for Childhood Arrival) program, and actions of ICE (Immigrant and Customs 

Enforcement).10 This rhetoric contributed to unprecedented confidentiality concerns, particularly 

among immigrants and people of color (Meyers 2017). Further, a 2020 Census study found that nearly 

half of the study’s participants expressed some level of concern about the confidentiality of their 

responses (McGeeney 2019). 

Controversy over the last-minute addition of the citizenship question could have also heightened 

growing fears and suppressed household participation. The untested question gained national media 

attention, raising concerns of a potential chilling effect among some groups, including Hispanic/Latinx 

people and immigrants (Baum et al. 2019; Kissam et al. 2019).11 In July 2019, a divided Supreme Court 

ruled that the Commerce Department’s decision to include this question violated federal law.12 Even 

with the question’s exclusion, the administration planned to use administrative records to try to 

determine the US citizenship status of every adult at the block level (Deaver 2020, 6). For these reasons, 

many experts assume that some households likely did not participate and noncitizens were missing from 

household rosters, even when households responded, because of fear and government distrust. This 

suggests possible further reduction of the 2020 count’s accuracy. 
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COVID-19 

As part of operational and budget planning, the Census Bureau factors in the possibility of a natural 

disaster affecting its decennial data collection. In 2017, its cost estimate included a cushion of 10 

percent additional funding in case of “unknown unknowns” that might emerge during fieldwork 

(Goldenkoff and Powner 2018, 26). However, 2020 proved to be an extraordinary year, with natural 

disasters like hurricanes, wildfires, and most notably, the COVID-19 pandemic. 

The US government declared a pandemic on March 13, 2020,13 a day after the 2020 Census began 

mailing information to households to participate (GAO 2020a). This timing likely affected census 

participation in multiple ways. For those who were homebound and most likely to self-respond, having a 

web-based option likely enhanced participation; nearly two-thirds of US households self-responded to 

the census and primarily online.14 For those who are hardest to count, however, field operations and 

staff hiring were delayed by the pandemic, in-person community-based outreach was halted, and public 

health concerns about the safety of conducting in-person follow-up to nonresponsive households were 

heightened (GAO 2020b). Indications exist that enumerating apartment dwellers became harder in 

2020, in part because of the pandemic, further contributing to concerns about coverage.15 

Such delays and postponements have prompted concerns about equity in the census. Communities 

hardest hit by COVID-19 early in the pandemic tended to be those inhabited by the hardest to count, 

including areas with lower incomes and Black and Hispanic/Latinx communities.16 Further, many 

households and those living in dormitories and college towns relocated at the start of the pandemic, 

raising concerns about how people would answer the census based on their usual residence during 

COVID-19.17 In addition to delayed fieldwork, the schedules for data-processing activities and data 

releases, such as the official apportionment counts and redistricting data released to the states, were 

also extended.18 Overall, the full scope of the pandemic’s effects on the 2020 census, and particularly on 

the hardest-to-count communities, will be better understood when additional quality metrics are 

released from the Census Bureau and analyzed in depth (GAO 2020a). 

OPERATIONAL CHANGES 

Every decennial census adjusts its operational procedures to reflect technological advancements, the 

changing patterns of society, or funding limitations. For the 2020 Census, the most significant 

technological advancement was the introduction of a web-based option, or the Internet Self-Response 

(ISR), for households to complete the count (Decennial Census Management Division 2018). This 

change reflects the growing reach of technology, as well as the need to save on costs (US Census Bureau 

2018). Although the Census Bureau had been using web-based approaches in other data-collection 
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efforts—notably the American Community Survey—2020 was the first time it was not only available on 

the census, but also actively encouraged as an option (US Census Bureau 2018).  

Overall, the ISR was a successful operational change with 53.5 percent of US households answering 

via the Internet, contributing to a total US self-response rate of 67 percent,19 surpassing what was 

projected in official operational plans (US Census Bureau 2018). Higher self-response on the census is 

generally associated with better quality data. A looming question, however, is whether duplications 

increased because of ISR; households could respond via the Internet whether they provided their 

household’s Census ID or not (Decennial Census Management Division 2018). Although other 

identifiers can be used to deduplicate records if no Census ID is provided,20 it is likely that some 

duplications persisted and contributed to a net overcount. Until additional data are released by the 

Census Bureau about the ISR’s performance we will not know how it contributed to error.  

Another advancement in the 2020 Census was the expanded use of administrative records—using 

other government or private entity data—to verify addresses, improve nonresponse follow-up by 

enumerators working in the field, and provide proxy data when households did not complete the census 

(Deaver 2020). Originally, the Census Bureau intended to use administrative records in the 2020 

Census only if multiple data sources substantiated the household and its residents (Deaver 2020). 

Toward the end of the fieldwork period, which was curtailed by the pandemic and hurricanes, the 

Census Bureau began using administrative records data for nonresponse households, even if only a 

single source of such data were available because of perceived higher quality relative to alternatives 

like imputation.21 Overall, 5.6 percent of all households were enumerated with administrative records 

nationwide, but it remains unclear whether these data improved 2020 Census performance.22 

Finally, to trim funding, better leverage field staff, and create a more efficient nonresponse follow-

up period, the 2020 Census introduced an innovative adaptive design that used technology and 

paradata to assign work to enumerators in real time as cases opened and closed (Decennial Census 

Management Division 2018). The approach was developed, tested, and researched throughout the 

preceding decade to develop the dynamic approach applied in the 2020 Census (Konicki and Adams 

2015). Based on developmental research, adaptive design likely improved data collection and reduced 

errors. 

As discussed, the COVID-19 pandemic created major operational adjustments, including delays in 

the fieldwork and data-processing periods, a shortened field operations schedule, and changes in 

protocols to accommodate new schedules. Funding shortfalls in the decade leading up to the 2020 

Census also increased risks to its successful implementation (Goldenkoff and Powner 2018). 

Innovations, whether planned or implemented mid-census, may have improved the quality of the final 
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2020 Census data, but we will not have such insights until findings from the 2020 PES are released in 

the coming year (GAO 2020a). 

ACCOUNTING FOR FACTORS IN URBAN’S SIMULATED 2020 CENSUS 

Overall, factors that may have influenced the 2020 Census—from real demographic change in the past 

decade to operational changes to external factors like COVID-19 and political forces—have created a 

situation with many unknowns. The data quality and outcomes of the 2020 Census could be less 

predictable than in previous decades. Although self-response rates were higher than anticipated, early 

evidence suggests that differential self-response rates by age and race could generate unfairness in the 

final counts (O’Hare and Lee 2021; Santos 2020). Although groups external to the US Census Bureau, 

including an American Statistical Association sponsored research panel, are investigating the quality of 

the 2020 Census, such research relies on the Census Bureau’s own data quality indicators.23 

Benchmarks external to the US Census Bureau that explore the quality of the 2020 Census are 

needed. Urban’s microsimulation model is an effort to create external, yet plausible benchmarks 

grounded in census data and derived independently. Accordingly, our simulated 2020 Census controls 

for factors such as demographic shifts over the past decade and self-response rates to the 2020 Census 

and adjusts for estimates of how households with noncitizens may respond to the census. Our simulated 

2020 Census cannot control for factors that are harder to measure, such as pandemic-related obstacles, 

elevated distrust in government, and late operational changes such as increased use of administrative 

records. Nevertheless, Urban’s microsimulation data presents an innovative way to independently 

evaluate the census by simulating it and creating alternative scenarios that help us better understand 

the bounds of data quality and implications for our nation’s population from our once-a-decade count.  

Methodology 

The unique data presented in this report were created for this project as an additional benchmark to 

assess the quality of the 2020 Census. They were created in a two-step process. First, we projected the 

US population as of April 1, 2020, or Census Day, to estimate census counts overall and by demographic 

groups and geography. Second, we used the projected census counts to adjust the population in 

different ways to test scenarios and explore potential outcomes, such as apportionment and allocation 

of federal Medicaid funding. 
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Projecting the US Population 

As a basis for our microsimulation model, we began with a single projection of the actual population on 

April 1, 2020, or Census Day. In this section, we briefly describe our method for projecting the 

populations of US states at census time, with specific details available in the appendix. 

We started with estimates of 2015–19 combined American Community Survey (ACS) data from the 

US Census Bureau with a total of 15,947,000 person-level cases. For every US state, we projected the 

population by racial/ethnic groups, specifically non-Hispanic/Latinx white, Black, American Indian and 

Alaska Native, Asian, Hawaiian and Pacific Islander, and Hispanic/Latinx of any race. Then, within each 

racial/ethnic group in a state, we projected the population by age group. We then projected the 

population living in households owned or mortgaged versus rented and finally projected the population 

by household citizenship status.24 These population estimates provide the foundation for projecting 

2020 miscounts.  

We estimated the Census Day population by adjusting person-level analytic weights. We used 

Demographic Analysis (DA) Population Estimates (Jensen et al. 2020), with populations by single years 

of age, to calibrate and mature the US population weights from that provided in the 2015–19 ACS 

dataset to the US Census Bureau estimates for April 1, 2020. We made separate adjustments at the 

state level so the population estimates were consistent with the actual 2020 Census apportionment 

counts by state.  

How the Microsimulation Model Works 

In the social sciences, a microsimulation model is a computer program that mimics the operation of 

government programs and demographic processes on individual (“micro”) members of a population, 

such as people, households, or businesses. For each observation in a large-scale, population-based 

survey dataset, the computer program simulates outcomes of interest—such as how likely someone will 

be undercounted or overcounted in the 2020 Census—by applying actual or hypothetical program rules 

to the survey data about that observation. Each individual result is multiplied by whatever “weight” is 

associated with the unit in the survey data that contributes to a population projection according to the 

person’s demographic characteristics. The weighted individual results are added together to obtain 

aggregate results, which, in this study, reflect the entire population of the US. 

Microsimulation models require substantial time to develop and maintain but allow analyses usually 

not supported by other models. Microsimulation models capture interactions between multiple 

programs or policies, tabulate results by a wide variety of socioeconomic characteristics, and allow 
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almost unlimited “what if” testing of prospective government policies. In this case, our “what if” 

scenarios explore what both a simulated 2020 Census count and a hypothetical full count could look like 

for the US by geography and demographics, as well as scenarios for apportionment and Medicaid 

funding. See the appendix for additional methodological details about the microsimulation model’s 

construction. 

BOX 2 

Urban’s Microsimulation Scenarios 

Urban’s findings are derived from scenarios tested with our microsimulation model. These scenarios 

start with Urban’s projected population data, calibrated to April 1, 2020, as their foundation.  

 First, we explore a “simulated 2020 Census” scenario to determine what the final 2020 Census 

count—including miscounts—is most likely to be for the US population. We make a series of 

adjustments to our projected US population based on factors known to influence the count’s 

accuracy, including housing tenure, age, race and ethnicity, the presence of a noncitizen in a 

household, and self-response rates to the 2020 Census. Thus, we simulate the likely 2020 

Census environment and its limitations to achieving a complete count. This scenario answers 

the question, “What will the final 2020 Census count be if we replicate known factors that will 

produce miscounts?” In this scenario, we find that nationally, the 2020 Census likely produced 

an average overcount of 3.6 percent and an average undercount of 4.1 percent, yielding a total 

net undercount of the US population of 0.5 percent. 

 Second, we explore a “hypothetical full-count” scenario where we assume that there are no 

overcounts or undercounts among anyone in the US population. For this scenario, we nullify 

effects of net overcounts and net undercounts for all people. This scenario answers the 

question, “What if the true resident population of the US were counted completely, accurately, 

and only once?” Through this scenario, we explore the outcomes that a fair and accurate count 

would produce. 
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Findings 

In this section, we present data for these scenarios for all states and the 20 largest metropolitan areas, 

key demographic groups, and outcomes such as apportionment and Medicaid reimbursements by state.  

Assessments of 2020 Census Performance for States and Large Metropolitan Areas 

URBAN’S ASSESSMENT OF NATIONAL AND STATE MISCOUNTS IN THE 2020 CENSUS 

According to the official 2020 Census counts released on April 26, 2021, the US population had 

331,449,281 residents living in the 50 states and Puerto Rico on April 1, 2020.25 Urban produced a 

simulated 2020 Census to understand how the 2020 Census likely performed when enumerating the 

total resident population as of April 1, 2020. In this simulated 2020 Census, we account for shifting 

demographics, past decennial census performance, operational changes, and self-response rates to the 

2020 Census. In Urban’s model, we find that the 2020 Census likely had 4.1 percent omissions 

(undercounts) and 3.6 percent erroneous inclusions (overcounts), culminating in an overall net 

undercount of 0.5 percent (table 1). 

For comparison, the US Census Bureau’s PES found that the 2010 Census had 3.3 percent 

omissions (i.e., undercounts not captured by imputation) counterbalanced by about 3.3 percent 

overcounts, which produced a net undercount close to zero.26 We will not know the official accuracy 

assessment of the 2020 Census until the US Census Bureau releases its PES results in late 2021 or early 

2022. 

If the 2020 Census were a full count—if all people were enumerated—we would have different 

outcomes. In Urban’s hypothetical full-count scenario, we assume that being overcounted or 

undercounted would not vary by demographic and other factors, as they do in Urban’s simulated 2020 

Census, and it would be a fairer count. In other words, with our hypothetical full-count scenario, we 

show what the true resident population is and assume everyone was counted once. In our hypothetical 

full-count scenario, the US resident population is 333,132,506. This suggests that the US failed to count 

1,683,225 people in 2020, with a net undercount of 0.51 percent (table 1). 

In Urban’s simulated 2020 Census, some states had higher percentages of miscounts than others. 

For example, Alaska, Georgia, Louisiana, Mississippi, New Mexico, New York, and Texas all had likely 

undercounts that were greater than 1 percent of their population. Excluding the District of Columbia, 

the highest net undercounts for states in Urban’s simulated 2020 Census were in Mississippi and Texas, 

where 1.3 and 1.28 percent, respectively, of each state’s “true” total population was undercounted in 
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our model. Because Texas has such a large population, this means that 377,187 residents in the true 

population of Texas were not counted in the 2020 Census. Framed in different terms, this means that 

more than one-fifth of all people not counted in the 2020 Census resided in Texas. A combination of 

factors—including demographic diversity and lower self-response rates—contributed to undercounts in 

these states. In Urban’s model, Texas had the largest undercount among the 50 states at 5.16 percent, 

which is consistent with historical patterns (Elliott et al. 2019). 

In contrast, four states—Iowa, Minnesota, New Hampshire, and Wisconsin—all had overcounts of 

0.5 percent or more in Urban’s simulated 2020 Census. Minnesota had the highest net overcount in 

Urban’s simulated 2020 Census, where 0.76 percent of its population was overcounted overall. This is 

not surprising; Minnesota had the highest self-response rate with 75.1 percent of its population having 

completed the 2020 Census on their own.27 This is reflected in Minnesota’s other notable distinction in 

Urban’s model; it had the lowest undercount (2.44 percent) in the nation.
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TABLE 1 

In Urban’s Simulated 2020 Census, the US Population Had a Net Undercount of 0.5 Percent 

Estimated 2020 Census overcounts, undercounts, and net miscounts by state 

State 
Official count 
(2020 Census) 

Hypothetical full 
count (Urban) 

Overcount (Urban) Undercount (Urban) Net miscount (Urban) 
Estimate Percent Estimate Percent Estimate Percent 

Total 331,449,281 333,132,506 11,895,454 3.57 -13,578,679 -4.08 -1,683,225 -0.51 
Alabama 5,024,279 5,057,647 185,344 3.66 -218,712 -4.32 -33,368 -0.66 
Alaska 733,391 741,182 29,238 3.94 -37,028 -5.00 -7,791 -1.05 
Arizona 7,151,502 7,199,551 269,135 3.74 -317,184 -4.41 -48,049 -0.67 
Arkansas 3,011,524 3,034,480 114,054 3.76 -137,009 -4.52 -22,956 -0.76 
California 39,538,223 39,883,320 1,485,352 3.72 -1,830,449 -4.59 -345,097 -0.87 
Colorado 5,773,714 5,780,417 196,001 3.39 -202,704 -3.51 -6,703 -0.12 
Connecticut 3,605,944 3,608,799 120,141 3.33 -122,996 -3.41 -2,855 -0.08 
Delaware 989,948 992,287 35,658 3.59 -37,997 -3.83 -2,339 -0.24 
DC 689,545 703,955 28,554 4.06 -42,963 -6.10 -14,410 -2.05 
Florida 21,538,187 21,745,120 803,725 3.70 -1,010,658 -4.65 -206,933 -0.95 
Georgia 10,711,908 10,836,346 411,103 3.79 -535,541 -4.94 -124,438 -1.15 
Hawaii 1,455,271 1,465,761 54,122 3.69 -64,612 -4.41 -10,490 -0.72 
Idaho 1,839,106 1,835,144 59,212 3.23 -55,250 -3.01 3,962 0.22 
Illinois 12,812,508 12,837,148 440,428 3.43 -465,068 -3.62 -24,640 -0.19 
Indiana 6,785,528 6,780,136 222,150 3.28 -216,758 -3.20 5,392 0.08 
Iowa 3,190,369 3,173,935 102,196 3.22 -85,762 -2.70 16,434 0.52 
Kansas 2,937,880 2,934,731 99,855 3.40 -96,706 -3.30 3,149 0.11 
Kentucky 4,505,836 4,507,088 147,909 3.28 -149,161 -3.31 -1,252 -0.03 
Louisiana 4,657,757 4,710,177 179,192 3.80 -231,612 -4.92 -52,420 -1.11 
Maine 1,362,359 1,366,319 47,756 3.50 -51,716 -3.79 -3,960 -0.29 
Maryland 6,177,224 6,207,158 211,360 3.41 -241,294 -3.89 -29,934 -0.48 
Massachusetts 7,029,917 7,037,341 237,272 3.37 -244,696 -3.48 -7,424 -0.11 
Michigan 10,077,331 10,045,051 328,349 3.27 -296,070 -2.95 32,280 0.32 
Minnesota 5,706,494 5,663,238 181,330 3.20 -138,074 -2.44 43,256 0.76 
Mississippi 2,961,279 3,000,324 111,140 3.70 -150,185 -5.01 -39,045 -1.30 
Missouri 6,154,913 6,166,464 203,762 3.30 -215,313 -3.49 -11,551 -0.19 
Montana 1,084,225 1,089,265 37,241 3.42 -42,281 -3.88 -5,040 -0.46 
Nebraska 1,961,504 1,955,031 65,690 3.36 -59,217 -3.03 6,473 0.33 
Nevada 3,104,614 3,126,259 122,080 3.90 -143,724 -4.60 -21,645 -0.69 
New Hampshire 1,377,529 1,369,876 46,565 3.40 -38,912 -2.84 7,653 0.56 
New Jersey 9,288,994 9,322,947 328,230 3.52 -362,184 -3.88 -33,953 -0.36 
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State 
Official count 
(2020 Census) 

Hypothetical full 
count (Urban) 

Overcount (Urban) Undercount (Urban) Net miscount (Urban) 
Estimate Percent Estimate Percent Estimate Percent 

New Mexico 2,117,522 2,139,618 82,674 3.86 -104,770 -4.90 -22,096 -1.03 
New York 20,201,249 20,425,887 769,813 3.77 -994,452 -4.87 -224,638 -1.10 
North Carolina 10,439,388 10,519,940 390,533 3.71 -471,085 -4.48 -80,552 -0.77 
North Dakota 779,094 779,105 27,499 3.53 -27,509 -3.53 -11 0.00 
Ohio 11,799,448 11,780,818 389,774 3.31 -371,144 -3.15 18,630 0.16 
Oklahoma 3,959,353 3,990,397 151,670 3.80 -182,714 -4.58 -31,044 -0.78 
Oregon 4,237,256 4,234,697 143,637 3.39 -141,078 -3.33 2,559 0.06 
Pennsylvania 13,002,700 12,978,273 430,383 3.32 -405,956 -3.13 24,427 0.19 
Rhode Island 1,097,379 1,103,296 37,866 3.43 -43,782 -3.97 -5,917 -0.54 
South Carolina 5,118,425 5,165,533 192,617 3.73 -239,725 -4.64 -47,108 -0.91 
South Dakota 886,667 884,886 28,904 3.27 -27,122 -3.07 1,781 0.20 
Tennessee 6,910,840 6,938,559 245,177 3.53 -272,896 -3.93 -27,719 -0.40 
Texas 29,145,505 29,522,692 1,144,787 3.88 -1,521,974 -5.16 -377,187 -1.28 
Utah 3,271,616 3,266,586 108,421 3.32 -103,392 -3.17 5,030 0.15 
Vermont 643,077 646,050 21,729 3.36 -24,702 -3.82 -2,973 -0.46 
Virginia 8,631,393 8,642,370 292,085 3.38 -303,062 -3.51 -10,977 -0.13 
Washington 7,705,281 7,697,407 255,717 3.32 -247,843 -3.22 7,874 0.10 
West Virginia 1,793,716 1,802,367 64,598 3.58 -73,250 -4.06 -8,651 -0.48 
Wisconsin 5,893,718 5,859,430 192,516 3.29 -158,228 -2.70 34,288 0.59 
Wyoming 576,851 578,095 20,915 3.62 -22,159 -3.83 -1,244 -0.22 

Sources: Urban’s Simulated 2020 Census data and the US Census Bureau’s 2020 Census Total Resident Population Counts.
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PERFORMANCE OF THE 20 LARGEST METRO AREAS IN THE 2020 CENSUS 

According to Urban’s simulated 2020 Census, performance varied across different metro areas (figure 1). 

The outcomes in different metro areas reflect their diverse populations, as well as whether they were in 

areas with above- or below-average self-response rates. Minnesota and Wisconsin had above-average 

self-response rates and an overcount in Urban’s model, so it is not surprising that the Minneapolis-St. Paul-

Bloomington, MN-WI metro area had an overcount in Urban’s model of more than 1 percent. In contrast, 

the Miami, Los Angeles, and Houston metropolitan statistical areas (MSAs) had the largest undercounts 

among the 20 largest MSAs at -1.7, -1.39, and -1.38 percent, respectively. The diversity of these metro 

areas’ populations, including large numbers of Hispanic/Latinx, Black, and foreign-born residents who 

have historically been undercounted in decennial censuses, as well as low self-response rates in the 2020 

Census, culminate in higher percentages of undercounts relative to other metro areas. 

FIGURE 1 

The Miami Metropolitan Area Has an Undercount of More Than 1.7 Percent 

Percent of total miscounts for the 20 largest metropolitan statistical areas 

URBAN INSTITUTE 

Source: Urban’s Simulated 2020 Census data.  
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Probable Miscounts for Major Demographic Groups in the 2020 Census 

Certain demographic groups have been historically harder to count in decennial censuses than others. 

These groups include people of color, renters, and young children (GAO 2018). Structural inequalities 

often contribute to this, and the pandemic exacerbated such challenges.28 Black and Hispanic/Latinx 

adults were hardest hit by job loss and financial hardships during the first six months of the pandemic 

(Karpman, Zuckerman, and Kenney 2020). Communities of color were hotspots for COVID-19 at the 

same time the 2020 Census was beginning field operations in earnest.29 Apartment dwellers were 

challenging to enumerate in the 2020 Census during the pandemic because of entry restrictions and a 

lack of cooperation from building managers.30 Government distrust was high among foreign-born 

communities because of politicization of the census in the years leading up to it.31 Considering the 

additional health concerns, economic and political stressors, and access challenges affecting those who 

are often hardest to count, it may have been even more challenging to enumerate them in 2020 amidst 

so much uncertainty.32 

Urban’s simulated 2020 Census data show that the demographic groups who have been historically 

under- and overcounted will follow those same patterns in the 2020 Census (figure 2).33 Looking at 

breakdowns by racial and ethnic identification, we see that more than 2 percent of Hispanic/Latinx 

(2.17 percent) and Black people (2.45 percent) likely had a net undercount in the 2020 Census. In 

contrast, the data show that 0.39 percent of the white population was net overcounted in the 2020 

Census. These differences in Urban’s simulated 2020 Census are primarily driven by higher omissions in 

the data for Black and Hispanic/Latinx people relative to white people (table 2).34 

The implications of these miscounts are important for racial equity. Because the US has patterns of 

residential segregation, an undercount of Black and Hispanic/Latinx people means that the communities in 

which they live will miss out on their fair share of funding and resources. An overcount of white people 

nationwide in the 2020 Census means their communities will receive more resources than they should. 

This reinforces existing inequities in how health care, infrastructure, and political representation are 

distributed for the next decade. 
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FIGURE 2 

More Than 2 percent of Black and Hispanic/Latinx People Were Likely Undercounted Overall 

Percent of total miscounts by race and ethnicity in the 2020 Census 

URBAN INSTITUTE 

 Source: Urban’s simulated 2020 Census data. 

TABLE 2 

Undercounts Drive Net Miscounts for Key Demographic Groups 

Estimated 2020 Census overcounts, undercounts and net miscounts by key demographic groups 

Demographic group 
Overcount  

(Urban) 
Undercount  

(Urban) 
Net miscount 

(Urban) 

Total 3.57  4.08  -0.51% 

Race or ethnicity 
   

Hispanic/Latinx, any race 4.15 6.32 -2.17% 
White or other 3.21 2.82 0.39% 
Black 4.46 6.91 -2.45% 
American Indian or Alaska Native 4.94 5.30 -0.36% 
Asian 3.44 4.04 -0.60% 
Hawaiian or other Pacific Islander 4.31 5.83 -1.52% 

Age group 
  

  

Birth to age 4 4.13 8.99 -4.86% 
Ages 5 to 9 3.50 3.62 -0.13% 
Ages 10 to 17 3.81 3.18 0.63% 
Ages 18 to 29 5.00 5.86 -0.87% 
Ages 30 to 49 2.93 4.78 -1.85% 
Ages 50 to 99 3.25 2.29 0.96% 

Housing tenure 
  

  

Owner 3.02 2.70 0.32% 
Renter 4.88 7.02 -2.13% 

Noncitizen in household 
  

  

No 3.46 3.51 -0.05% 
Yes 4.30 7.66 -3.36% 

Source: Urban’s simulated 2020 Census data. 
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In decennial censuses, young children have been historically undercounted, while older Americans 

have tended to be overcounted (King, Ihrke, and Jensen 2018; O’Hare 2015). In 2010, children younger 

than age 5 had the highest omission rates of any age group, which drove the undercount of young children 

in that census (Decennial Statistics Studies Division 2016). In Urban’s simulated 2020 Census, we find that 

young children again were likely net undercounted at higher rates than any other age group (figure 3). We 

estimate that 4.86 percent of children younger than age 5 in the true US population were unlikely included 

in the 2020 Census. This is because young children have higher omissions, or undercounts, in the data than 

any other group—about 9 percent—which is not compensated for with overcounts. In contrast, nearly 1 

percent of those older than age 50 were likely overcounted in the US (table 2). 

FIGURE 3 

Nearly 5 Percent of Children Younger Than Age 5 Were Likely Undercounted Overall 

Percent of total miscounts by age group in the 2020 Census  

URBAN INSTITUTE 

Source: Urban’s simulated 2020 Census data. 

In decennial censuses, renters have historically been among the hardest-to-count people (GAO 

2018). This was likely in 2020 too; recent analyses of the 2020 Census show that census tracts with 

majorities of renters had an average self-response rate 10 percent lower than all others (O’Hare and 
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Lee 2021). Although self-response is not the only way people and households are counted in the census, 

it is an important marker of higher-quality data.35 Urban’s simulated 2020 Census data find that renters 

likely had a net undercount of 2.13 percent, while homeowners likely had a 0.32 percent net overcount 

(table 3). For renters, the net undercount was driven by high percentages of omissions, or undercounts, 

at 7.02 percent. 

The months and years leading up to the 2020 Census were also marked by growing hostility toward 

foreign-born people. A chilling effect was reported among the foreign-born regarding their participation 

in census activities as early as 2017.36 The 2020 Census was also marked by a failed attempt to add a 

citizenship question to it37 and contributed to heightened distrust among noncitizens. Researchers 

estimated that adding the citizenship question led to a 2.2 percentage point drop in self-response to the 

2020 Census overall because of omissions among households with at least one noncitizen (Brown et al. 

2019). These factors all suggest that noncitizens were an especially likely undercounted group in the 

2020 Census. In Urban’s simulated 2020 Census, we find that those with noncitizens in the household 

had a probable net undercount of 3.36 percent, driven by an especially high rate of omissions (7.66 

percent) (table 2). These findings reflect research finding that respondents born outside of the US were 

significantly more concerned than those born in the US that their answers on the 2020 Census would be 

used against them (McGeeney et al. 2019). Lack of trust in the US Census Bureau safeguarding their 

data would directly impact whether someone would willingly respond to the census. 

How the 2020 Census Relates to Potential Funding and Apportionment Scenarios 

The 2020 Census should be fair and accurate, not solely because data quality matters, but also because 

so many federal decisions critical to US democracy are built on it. The 2020 Census data are used for 

political decisionmaking, such as apportionment and redistricting, which determine representation at 

the federal and local levels for the entire following decade. Data from the 2020 Census are also used to 

allocate federal spending; more than 316 federal programs have their allocations determined using 

decennial census data in some form (Reamer 2019). Thus, ensuring the 2020 Census data are high 

quality matters a great deal for political and funding outcomes that affect all US residents. 

Apportionment. Article 1, section 2 of the US Constitution states that an enumeration of the country 

should be conducted every 10 years to determine how representatives are apportioned between the 

states in the Union; apportionment is the reason we have a decennial census.38 To determine how the 

435 representatives are allocated every 10 years, the US Census Bureau uses the decennial census data 

to assign each state at least one representative, and the remaining 385 seats are then assigned based on 
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population.39 Urban replicated the “method of equal proportions” used by the US Census Bureau on the 

simulated data (see appendix for details). 

In Urban’s hypothetical full-count scenario, we assume that all US residents in the true population 

are counted once in the 2020 Census. This scenario is never likely to occur but helps us understand how 

an optimal census scenario would relate to apportionment. In Urban’s hypothetical full count, we find 

that only two states would have a different number of seats in the US House of Representatives than 

what they had in the official 2020 Census results. In this scenario, Minnesota would lose a 

representative (from 8 to 7) and New York would gain a representative (from 26 to 27). 

Medicaid funding. In addition to apportionment, the 2020 Census is used to determine how to 

allocate money to federally funded programs. The amount is not trivial, either. One recent estimate 

found that more than 1.5 trillion dollars in federal funding is allocated to 316 programs using decennial 

census counts, directly and indirectly (Reamer 2019). Medicaid is one of the largest programs that uses 

census counts to distribute funds to states. In fiscal year 2017, Reamer (2019) estimated that federal 

reimbursements to the states for programs based on the FMAP formula, such as Medicaid, was more 

than $405 billion. 

Because Medicaid funding is such an important way in which the decennial census counts have 

direct relevance for states, their budgets, and their residents’ well-being, it can illustrate the impact of 

an incomplete count. We present findings that calculate the FMAP for each state based on our 

hypothetical full-count simulation where we assume that everyone is counted accurately and 

completely and compare them with the FMAP calculated with the official 2020 Census counts. The 

FMAP determines the percentage of a state’s Medicaid expenses that the federal government will 

reimburse. It is derived from understanding state per capita income relative to the national estimate 

and ranged from 50 to 78 percent in 2021.40 It is important to note that our FMAP calculations are a 

proxy; many official data sources used by the Department of Health and Human Services to produce the 

official numbers are not publicly available. So we have replicated this with comparable and up-to-date 

data sources. See the appendix for additional information about our methodological decisions. 

As the table below demonstrates, states where we estimate a net undercount would miss out on 

tens of millions of dollars every year in Medicaid reimbursements (table 3). Texas notably would miss an 

estimated $247 million in federal reimbursements for Medicaid in 2021. This is about 1 percent of what 

they would be estimated to receive with their official census counts. Florida ($88 million), Louisiana 

($46 million), Georgia ($47 million), North Carolina ($24 million), and Mississippi ($20 million) are 

among those states that could miss out on large federal Medicaid reimbursements in 2021 because of 
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2020 Census undercounts. The values range from 0.26 to 0.99 percent of the total federal Medicaid 

reimbursements for these states.  

In Urban’s simulated 2020 Census, we estimate that some states had net overcounts of their 

populations. These overcounts mean that in the next decade, such states will receive more federal 

Medicaid reimbursement money than if they had an accurate count. If each person were counted in the 

2020 Census accurately, Pennsylvania would receive $215 million less in Medicaid reimbursements. 

Ohio ($112 million), Minnesota ($156 million), and Michigan ($107 million) would each receive much 

lower Medicaid reimbursements from the federal government, attributed to overcounts of their 

populations. The values range from 0.74 to 2.33 percent of the total federal Medicaid reimbursements 

for these states. 

Of note, states with no difference in their funding under this scenario include Alaska, California, 

Colorado, Connecticut, Maryland, Massachusetts, New Hampshire, New Jersey, New York, 

Washington, West Virginia, and Wyoming. Except for West Virginia, these states have high per capita 

income relative to the national per capita income, which means they routinely do not qualify for 

reimbursements above the 50 percent minimum for reimbursements. This would not change in a 

hypothetical full count either. 

TABLE 3 

Some States Miss Out on Millions of Federal Reimbursement Dollars by Not Counting All Residents 

Estimated 2021 federal reimbursements for Medicaid to states, based on the FMAP (millions of dollars)  

State 

Federal Medicaid 
reimbursements using 

official census count  
($ millions) 

Federal Medicaid 
reimbursement using 

hypothetical full count  
($ millions) 

Difference in what states 
would receive in a 

hypothetical full count  
($ millions) 

Total 345,744 345,263 -481 
Alabama 4,318 4,323 5 
Alaska 1,057 1,057 0 
Arizona 8,829 8,843 14 
Arkansas 4,916 4,926 10 
California 44,368 44,368 0 
Colorado 4,650 4,650 0 
Connecticut 4,299 4,299 0 
Delaware 1,331 1,326 -5 
Florida 14,731 14,819 88 
Georgia 7,257 7,304 47 
Hawaii 1,243 1,247 4 
Idaho 1,518 1,508 -9 
Illinois 9,486 9,429 -57 
Indiana 8,322 8,273 -49 
Iowa 3,248 3,206 -42 
Kansas 2,188 2,171 -18 
Kentucky 7,447 7,421 -27 
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State 

Federal Medicaid 
reimbursements using 

official census count  
($ millions) 

Federal Medicaid 
reimbursement using 

hypothetical full count  
($ millions) 

Difference in what states 
would receive in a 

hypothetical full count  
($ millions) 

Louisiana 8,063 8,109 46 
Maine 1,855 1,850 -5 
Maryland 5,904 5,904 0 
Massachusetts 8,811 8,811 0 
Michigan 11,909 11,802 -107 
Minnesota 6,688 6,533 -156 
Mississippi 4,290 4,310 20 
Missouri 6,821 6,799 -22 
Montana 1,206 1,206 -1 
Nebraska 1,265 1,250 -15 
Nevada 2,493 2,499 6 
New Hampshire 999 999 0 
New Jersey 8,046 8,046 0 
New Mexico 3,877 3,892 15 
New York 30,141 30,141 0 
North Carolina 9,220 9,244 24 
North Dakota 663 658 -5 
Ohio 15,211 15,098 -112 
Oklahoma 3,514 3,522 9 
Oregon 5,566 5,522 -44 
Pennsylvania 16,820 16,605 -215 
Rhode Island 1,457 1,458 1 
South Carolina 4,559 4,575 16 
South Dakota 521 515 -5 
Tennessee 6,862 6,856 -7 
Texas 24,868 25,115 247 
Utah 1,808 1,795 -13 
Vermont 962 961 -1 
Virginia 5,760 5,718 -42 
Washington 7,480 7,480 0 
West Virginia 2,932 2,932 0 
Wisconsin 5,667 5,588 -78 
Wyoming 297 297 0 

Sources: US Bureau of Economic Analysis State Annual Personal Income 2020 (Preliminary), Urban’s hypothetical full-count data, 

and the US Census Bureau’s 2020 Census Total Resident Population Counts. 

Notes: Estimates are subject to rounding; the “Difference” column may be +/- 1 as a result. The District of Columbia is not 

included because its FMAP reimbursements are fixed. 

Medicaid is a straightforward example that illustrates how the census impacts federal funding 

allocations to states because its formula directly uses population counts. In contrast, most other federal 

funding allocations rely on counts by characteristics such as age or income to determine a more 

selective population of eligibility (Reamer 2018). Consequently, our example may understate the full 

effect an undercount could have on a community’s funding. For example, we know that children younger 

than age 5 have historically been undercounted (O’Hare 2015). In Texas, the undercount of young 

children was likely much higher than in most other states (Elliott et al. 2019). Federal funding allocations 
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based on counts of young children will further disadvantage those in Texas, relative to other states, over 

the next decade. 

Data Considerations 

This study is based on the best data available and is grounded in robust projections and microsimulation 

methodologies. However, there are important limitations in our analyses and the assumptions we make 

to produce these data. We feature overarching considerations here. 

Our projections of the population used the best data sources available, but they have limits. Our 

estimates of the census’s accuracy rely on data with distributions of individual and household 

characteristics of states and geographical areas. Such characteristics include age, race, ethnicity, 

citizenship, whether households are rented or owned, and local rates of self-response to the 2020 

Census. The 2015–19 American Community Survey (ACS) has data on most of these characteristics, but 

these data are themselves subject to error and require projection methods to mature the population to 

Census Day. The data sources we used to calibrate the “maturing” of the population—namely the 

Census Bureau’s 2020 Demographic Analysis and the 2020 Census itself—provided counts for the 

national age distribution in 2020 and state population totals in 2020, respectively, but did not provide 

information on all population characteristics we projected at the state level and are themselves subject 

to uncertainty. As new information is made available and incorporated in our models, it will be possible 

to further calibrate our estimates of the starting population on Census Day 2020. 

Our models of the 2020 Census data’s accuracy are based on the 2010 Census and follow-up 

surveys. We know that population shifts from 2010 to 2020 included some characteristics associated 

with lower census accuracy in 2010 (such as an increased share of renter households), as well as some 

characteristics associated with higher census accuracy in 2010 (such as an increased share of people 

ages 50 and older). However, we cannot know the relationships between these population 

characteristics and the 2020 Census’s accuracy until the Census Bureau releases findings from the 

2020 PES. Further, there are reasons to anticipate that some relationships between population 

characteristics and census accuracy will have changed amid the new circumstances of the 2020 Census. 

For example, the shift from mail to internet as the primary mode of self-response will likely change the 

relationship between Census accuracy and household renter or ownership status. 

Our models of the 2020 Census data’s accuracy assumed no interactions between different 

population characteristics. We know that multiple population characteristics affect census accuracy, 

but past postcensus surveys such as the PES do not have the precision for estimating the degree of 
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overlap of those characteristics. For example, part of the reason US people older than 50 had relatively 

high rates of census representation in 2010 was that they tended to live in owned rather than rented 

households. But the 2010 PES did not have the large sample sizes necessary to estimate how much the 

variation in census accuracy by age was because of homeownership, for example. The appendix includes 

details about the process for creating the study’s models of census accuracy across multiple individual 

and household characteristics. 

Some factors new to the 2020 Census were not incorporated in these analyses. Our data on 

census accuracy are derived from the 2010 Census. As additional data are released about the 2020 

Census’s performance, we will seek to incorporate additional factors in future analyses, including the 

following: 

 More than half of all households responding to the 2020 Census did so via the internet.41 How 

accurate were the responses of households who completed the census online rather than by 

other modes? How did online responses affect differences in census accuracy by characteristics 

of individuals and households (age, household tenure, citizenship, race and ethnicity, and new 

factors such as household income)? 

 How did changes in the questions, new coding rules, and innovations in the use of 

administrative records for imputation of missing data42 affect differences in census accuracy by 

characteristics of individuals and households (age, household tenure, citizenship, race and 

ethnicity)? 

 How did the special circumstances and population movements of the pandemic affect census 

accuracy? For example, were challenges encountered enumerating the group quarters 

population—particularly the college and university student housing population (GAO 2021)—

important for the count’s accuracy? 

 Did political division and government distrust affect 2020 Census participation and accuracy 

for different demographic groups and geographic regions?  

Because of these cited assumptions, the data we produce will not match the official estimates 

precisely—including those for states, metro areas, and demographic groups—and could be subject to 

future revisions as new data become available. All data-collection endeavors, including the decennial 

census, are imperfect; the “true” number cannot be known. The 2020 PES and various data-quality 

measures released by the US Census Bureau over time will shed light on some of these questions. For 

now, we urge caution in interpreting these results, because we cannot yet account for the 

aforementioned factors. 
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Conclusion 

Counting the US population every decade is an extraordinary effort. Years of research and planning go 

into its execution on Census Day on April 1st at the start of each new decade. Typically, the decennial 

census happens in predictable environments, and plans made by the US Census Bureau proceed 

accordingly. This was not the case in 2020. The 2020 Census was conducted during a pandemic and 

amidst politicization of its scientific work—threats to its execution not previously encountered. 

Although no census is perfect, questions and concerns have been raised about the quality of the 2020 

Census and whether the data will be as accurate as previous censuses (GAO 2020c; Thompson 2021). 

The goal of Urban’s study was to address such questions about quality and provide additional data 

about the 2020 Census’s accuracy and fairness. 

Our simulation of the 2020 Census finds there was likely an overall 0.5 percent net undercount of 

the US population. Although this is different from the 2010 count, which had near-perfect net accuracy, 

it is perhaps not as severe an undercount as some have feared.43 Net accuracy is important, but fairness 

also matters for the 2020 Census. We see considerable variation in who was undercounted and 

overcounted overall in the 2020 Census. We find that the true total population of Mississippi and Texas 

were undercounted in our simulated 2020 Census by 1.3 and 1.28 percent, respectively, while 

Minnesota was net overcounted by 0.76 percent. Such differences matter for these states for the next 

decade, as Mississippi and Texas residents will receive less of their fair share of federal funding for 

infrastructure, health care, and children’s programs, while Minnesota residents will receive more. For 

example, we find in our simulations that if residents had been counted accurately in the 2020 Census, 

Texas would receive over $247 million more and Minnesota would receive $156 million less federal 

Medicaid reimbursements in 2021. This illustrates the impact that a fair and accurate census has on 

people’s well-being and how disparate these outcomes can be across the nation. 

Similarly, we find that groups hardest to count in recent decennial censuses again were likely 

undercounted in the 2020 Census. Black and Hispanic/Latinx people had a net undercount of more than 

2.45 and 2.17 percent, respectively, in our simulated 2020 Census. Young children, or those younger 

than age 5, were likely net undercounted by 4.86 percent. Nationwide, renters were likely 

undercounted by 2.13 percent overall, and households with a noncitizen present were likely 

undercounted by 3.36 percent overall. For these groups, equity issues arise—not only with the count’s 

fairness, but also with how resources will be distributed and who will miss out on their fair share of 

political representation and funding. 
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It is impossible to change the outcomes of the 2020 Census, but with adequate planning and 

innovation, the 2030 Census can be improved for the hardest-to-count groups and places. First, future 

operational changes should be researched to better understand if their implementation will adversely 

affect enumerating the hardest to count. The expanded use of administrative records, for example, may 

not improve the enumeration of the hardest to count if they are also more likely to be missing from 

those data sources (McClure, Santos, and Kooragayala 2017). Second, states and cities should be 

supporting efforts to count their communities as completely as possible. Some have argued that 

Arizona, Florida, and Texas could have lost potential seats in the US House of Representatives, in part, 

because they did not sufficiently promote the census.44 Promoting participation in the 2030 Census will 

benefit all states, cities, and residents within them. Third, adequate funding for the census matters—not 

simply in the years where fieldwork is executed in earnest—and should be consistent and strong in early 

years when testing and planning for innovations occur.45 These efforts are all possible but require us to 

collectively recognize how critical it is to invest in the decennial census and value it as a core component 

of our democracy. 

The 2020 Census may have happened in an anomalous year. There may never be another census 

conducted amidst attempts to politicize it and as the country shuts down because of a pandemic. What 

is known, however, is that fully counting the nation’s population is becoming increasingly complicated. 

Innovations are needed to better understand the quality of the census count, its fairness, and its 

implications for the following decade. One potential innovation is Urban’s microsimulation model, which 

offers insights on the quality of the decennial census from a data source external to the US Census 

Bureau. Through our simulated 2020 Census, we provide an important evidence-based benchmark to 

better understand the decennial census’s performance. Over the next decade, refinements made to this 

model and new techniques from other researchers—both within and external to the US Census 

Bureau—will become increasingly important tools to ensure that our once-a-decade enumeration 

withstands threats and challenges to its quality in an increasingly complex nation.
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Appendix. Detailed Methodology 
To best understand the possible under- and overcounts in the 2020 Census, we created data in a two-

part process. First, we created a dataset with projections of the US population to April 1, 2020, and then 

used those data to create a microsimulation model. Below we explain these processes, assumptions, and 

scenarios for apportionment and Medicaid funding that we applied to the data. 

Developing 2020 Population Estimates 

We generated Census Day 2020 population estimates by geography, age group, race and ethnicity, 

presence of noncitizens in the household, and household ownership or renter status, for the US 

Household Resident Population for April 1, 2020 (Census Day). These population estimates provide the 

foundation for projecting 2020 undercounts. The following definitions were used in generating the 

2020 population estimates. 

Race and ethnicity. For this study, we applied a “bridged race” approach to specifying race categories 

that correspond with the race specifications used in the 2010 Census Coverage Measurement (CCM) 

study—our data source for historical miscounts in the census (Keller and Fox 2012; Mule 2012).46 To be 

consistent with racial and ethnic categories published in the CCM, we produce population projections 

for the total population and the following categories: Hispanic/Latinx (all races), white (non-

Hispanic/Latinx), Black (non-Hispanic/Latinx), American Indian and Alaska Native (non- 

Hispanic/Latinx), Asian (non-Hispanic/Latinx), and Hawaiian/Pacific Islander (non-Hispanic/Latinx). 

Age. Age is identified in single years of age; then grouped into categories used in the 2010 CCM study: 

from birth to age 4; ages 5 to 9, 10 to 17, 18 to 29, 30 to 49, and 50 and older. 

Geography. Geography is identified at the state level and at the level of 2012-defined Public Use 

Microdata Areas (PUMAs.) To merge and present information, we also identified the county of 

residence and metropolitan area of residence, if applicable.  

Household tenure. All individuals residing in households are identified as living in one of two kinds of 

households: those owned or mortgaged versus those rented. Group quarters populations are an 

additional category not included in the census accuracy estimates. 
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Citizenship. All individuals are identified into two categories related to citizenship status: US-born and 

naturalized citizens or noncitizens. All individuals are also identified as either living in a household with 

at least one noncitizen or living in a household of only citizens. 

Methodology for Creating Census Day Population 
Estimates 

Data. The core dataset for our microsimulation model is the 2015–19 combined American Community 

Survey (ACS), with a total of 15,947,000 person-level cases. The 2015–19 ACS has a set of analytic 

weights that sum to 324,697,795 million US residents, so each “case” in the sample can be thought of as 

a weighted entity representing about 20 US residents. The procedure for estimating the Census Day 

population involved adjusting the person-level analytic weights for each case to project to April 1, 2020, 

using the procedure described below. No person-level cases were added or subtracted from the ACS 

dataset during the population estimation procedure—only the person weights were adjusted. 

We used respondents’ detailed race self-reports in the ACS, including self-reports of multiple races, 

“other race,” and missing data on race to assign all cases to a limited set of racial and ethnic categories. 

We imputed categories for those missing race data. Each case with a “multiple race” response was 

allocated to a single racial/ethnic category, based on bridged race-allocation ratios (Liebler and 

Halpern-Manners 2008) and assignment according to a random draw from a uniform linear distribution. 

The categories we assigned are as follows: 

 Hispanic/Latinx ethnicity, any race selected 

 non-Hispanic/Latinx ethnicity, white 

 non-Hispanic/Latinx ethnicity, Black  

 non-Hispanic/Latinx ethnicity, American Indian and Alaska Native 

 non-Hispanic/Latinx ethnicity, Asian  

 non-Hispanic/Latinx ethnicity, Hawaiian and Pacific Islander 

We used the ACS person-level citizenship identifier and the household roster for each household to 

develop an indicator of whether a person coresided with noncitizens in the same household.  

We imputed county of residence from the PUMA variable. For instances where multiple counties 

make up a single PUMA, we imputed county using probabilities based on a synthetic weighted total 
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population average of the multiple counties. (We used this information to impute census self-response 

rates in the respondent’s county of residence.) 

Projection procedure. We used Demographic Analysis (DA) Population Estimates (Jensen et al. 2020), 

with populations by single years of age, to calibrate and mature the US population weights from those 

provided in the 2015–19 ACS dataset to the US Census Bureau estimates for April 1, 2020. Note that 

these Census Day population estimates were created before the release of any actual 2020 Census 

counts. We also incorporated separate adjustments by state so the population estimates were 

consistent with the actual 2020 Census apportionment counts by state. To calibrate our simulated 

population totals so the simulated census count would match the actual census count for each state, we 

created a weighting adjustment equal to the ratio of each state’s simulated census count to that state’s 

actual census count and applied that adjustment to each simulated person in the state. This adjustment 

turned out to be minor. Our initial estimation of the census count was about 0.15 percent smaller than 

the actual census count, so this additional adjustment had the cumulative effect of increasing the 

estimated person weights for the entire US population by 0.15 percent. 

Explaining the Microsimulation Model through Examples 

The crux of this project and its analysis is tied to Urban’s creation of a microsimulation model to 

understand the accuracy (with our simulated 2020 Census) and fairness (with our hypothetical full 

count) of the 2020 Census. As described in the report, a microsimulation model is a computer program 

that mimics the operation of government programs on individual members of a population. In our study, 

we use our simulated 2020 Census scenario to understand likely over- and undercounts in the 2020 

Census for the US population. We account for previous data on these patterns, including from the 2010 

Census, the 2010 PES, and other census and expert research. In these data, each individual result is 

multiplied by whatever “weight” is associated with the unit in the survey data. The weighted individual 

results are added together to obtain aggregate results, which in this study reflect the population of the 

US and different groups’ likelihood of being overcounted or undercounted in the 2020 Census. We then 

take these data to create a hypothetical full-count scenario to explore what a fair count would look like 

for the US if every person were counted and likely outcomes for apportionment and the allocation of 

federal Medicaid funding. 

The following example walks through the process for how a simplified computer program would be 

designed to determine if a person would be counted more than one time in the 2020 Census. This 

example is a simplification of our full methodology, which is described in more detail in the following 
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section. Let’s assume that we have a population drawn from the most recent ACS data containing 

information about each person with at least the following variables for adults: gender, age, marital 

status, number of children, and a measure of family income. 

The first step would be to determine the target number of people counted more than once. We 

might, for example, take the rates from tables provided by the self-reported response rates in the 

census. Using this rate and multiplying by the corresponding number of people in our survey in the same 

group, we would arrive at the target number of people enumerated twice that we need to simulate to 

match this assumed rate. For example, using a simple rate of 10 per 1,000 people, if we only had 100 

people, we would expect one person to be counted more than once. If we had 10,000 people, we would 

expect 100.  

Next, we develop a model to calculate the probability that a person is counted multiple times in the 

2020 Census. Suppose for our example’s sake that this probability is calculated via an equation and has 

values somewhere between 0.015 and 0.03. The table below shows a very simplified example of what 

might be calculated for 10 people. 

TABLE A.1  
Microsimulation Example, Based on Survey Data 

Person ID 

Probability of being 
enumerated twice in 2020 

Census Uniform random number 
Probability: random 

number 
1 0.015 0.1830 -0.1680 
2 0.026 0.7156 -0.6896 
3 0.030 0.7010 -0.6710 
4 0.022 0.6304 -0.6084 
5 0.016 0.9937 -0.9777 

6 0.015 0.7722 -0.7572 
7 0.018 0.0142 0.0038 
8 0.027 0.1376 -0.1106 
9 0.015 0.3259 -0.3109 
10 0.028 0.8894 -0.8614 

 The last step is to use a uniform random number drawn for each person for this event to choose the 

people who will be selected as counted twice.  

There are many ways this can be done. In a pure Monte Carlo simulation, we would choose the 

people for whom the probability of being counted twice is greater than or equal to a random number. In 

this case, that would simply be one person: Person ID 7.  

If we want to hit the target rate exactly, we could calculate the expected number of people we want 

to select, sort by the difference between the probability and the random number, and choose the 
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expected number of people to count twice. If the model has been calibrated well, then running without 

this alignment should produce results very close to those using the targets. 

Alternately, we could use weights, as we do in practice in this model and describe below. This 

weight can be adjusted to hit the targets. Again, if calibrated and performing well, the model will 

produce similar results with and without alignment to targets. 

Methodology for the 2020 Census Miscount Scenarios 

The 2020 Census miscount analysis allows users to examine rates of erroneous enumerations (counts 

of one person incorrectly identified as two) and of omissions (counts of one person incorrectly 

identified as zero people, grouped according to geographic areas and demographic and household 

characteristics).  

Simulated 2020 Census: Estimates of Census Accuracy  

We estimated the 2020 Census counts using a procedure that assigned each case in our population 

dataset to a census outcome of accurately counted, omitted (i.e., not counted), or erroneously 

enumerated (i.e., a person counted that was either a duplicate or otherwise associated with a count that 

should not have been made, such as a child born on April 2, 2020, or later). The sum of such assignments, 

weighted by the appropriate estimated person weights, resulted in weighted estimates of the census 

count for each geographic area and for each demographic subpopulation within a demographic area. 

Each case in the weighted sample is assigned a probability of an erroneous enumeration according 

to the following stepwise process. 

STEP 1: ADJUSTING FOR COUNTY CENSUS SELF-RESPONSE RATES:  

In the first step, the county-specific percent self-response rate for each case is identified using 2020 

Census data on county-specific self-response rates47 and matched to the case’s PUMA using crosswalk 

files from the Missouri Census Data Center.48 Using estimates from 2010 Census PES Data (US Census 

Bureau 2016), each case is given an initial probability of being erroneously enumerated or omitted 

according to the following formula: 

First-step probability of erroneous enumeration =  
 
P(erroneous enumeration, conditional on self-responding household in 2010)*(county 
proportion self-responding in 2020 Census)  
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+ P(erroneous enumeration, conditional on not self-responding household in 2010)*(1 - 
county proportion self-responding in 2020 Census) 

  
First-step probability of omission =  
 

P(omission, conditional on self-responding household in 2010)*(county proportion self-
responding in 2020 Census)  

+ P(omission, conditional on not self-responding household in 2010)*(1 - county 
proportion self-responding in 2020 Census)  

STEP 2: ADJUSTING FOR PRESENCE OF NONCITIZENS IN THE HOUSEHOLD  

In the second step, all cases are identified as either residing in a household with only citizens or residing 

in a household with at least one noncitizen.   

Each case has its probability of an omission adjusted according to the estimated probabilities 

reported by Brown and colleagues (2018) for being omitted from the American Community Survey if 

one resides in a household with only citizens or in a household with at least one noncitizen, respectively. 

To avoid overcounting the probability of omission because of the correlation between county self-

response rates and presence of noncitizens in the household, we summarize the first step probability of 

omission at the population level based on the county distribution of cases residing with only citizens and 

the county distribution of cases residing with at least one noncitizen, respectively. 

Second-step probability of erroneous enumeration =  
 

P(erroneous enumeration, conditional on whether there are noncitizen residents in the 
household)  
+ First-step probability of erroneous enumeration, conditional on county self-response 
rate  
- Adjustment for population correlation between noncitizen residents in household and 
county self-response rate 

 
Second-step probability of omission =  
 

P(omission, conditional on whether there are noncitizen residents in the household)  
+ First-step probability of omission, conditional on county self-response rate  
- Adjustment for population correlation between noncitizen residents in household and 
county self-response rate 

STEP 3: ADJUSTING FOR HOUSEHOLD TENURE  

In the third estimation step, all cases are identified as living in an owned or rented household (cases in 

group quarters settings are not given any adjustments) and have their probabilities of incorrect census 
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counts adjusted according to estimated omission and erroneous enumeration rates from the 2010 

Census (Mule 2012). 

Third-step probability of erroneous enumeration =  
 

P(erroneous enumeration, conditional on whether there the case is in an owned or 
rented household)  
+ Second-step probability of erroneous enumeration, conditional on county self-
response rate and noncitizen households in residence   
- Adjustment for population correlation between household tenure and second-step 
probability of erroneous enumeration 

 
Third-step probability of omission =  
 

P(omission, conditional on whether there the case is in an owned or rented household) 
+ Second-step probability of omission, conditional on county self-response rate and 
noncitizen households in residence  
- Adjustment for population correlation between household tenure and second-step 
probability of omission 

STEP 4: ADJUSTING FOR RACE AND ETHNICITY  

In the fourth estimation step, all cases are identified by combined racial and ethnic group and have their 

probabilities of incorrect census counts adjusted according to estimated omission and erroneous 

enumeration rates from the 2010 Census (Mule 2012). 

Fourth-step probability of erroneous enumeration =  
 

P(erroneous enumeration, conditional on racial and ethnic group)  
+ Third-step probability of erroneous enumeration, conditional on county self-
response rate, noncitizen households in residence, and household tenure   
- Adjustment for population correlation between racial/ethnic group and third-step 
probability of erroneous enumeration 

 
Fourth-step probability of omission =  
 

P(omission, conditional on racial and ethnic group)  
+ Third-step probability of omission, conditional on county self-response rate, 
noncitizen households in residence, and household tenure   
- Adjustment for population correlation between racial/ethnic group and third-step 
probability of omission 

STEP 5: ADJUSTING FOR AGE GROUP  

In the fifth estimation step, all cases are identified by age group and have their probabilities of incorrect 

census counts adjusted according to estimated omission and erroneous enumeration rates from the 

2010 Census (Mule 2012). In addition, because of known correlation between errors in census counts 
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for the 0–4 age group and in postenumeration survey counts for the 0–4 age group, an additional 3.9 

percent is added to the omission rate for the 0–4 age group (O’Hare 2015). 

Fifth-step probability of erroneous enumeration =  
 

P(erroneous enumeration, conditional on age group)  
+ Fourth-step probability of erroneous enumeration, conditional on county self-
response rate, noncitizen households in residence, household tenure, and racial/ethnic 
group   
- Adjustment for population correlation between age group and fourth-step probability 
of erroneous enumeration 

 
Fifth-step probability of omission =  
 

P(omission, conditional on age group)  
+ Fourth-step probability of omission, conditional on county self-response rate, 
noncitizen households in residence, household tenure, and racial/ethnic group   
- Adjustment for population correlation between age group and fourth-step probability 
of erroneous enumeration 

STEP 6: ASSIGNMENT OF DISCRETE CENSUS COUNT OUTCOMES 

As of step five, every case of the 15.947 million person records in our reweighted ACS microsimulation 

dataset has a probability of an erroneous enumeration and a different probability of an omission. As a 

final sixth step in this microsimulation implementation, each case is assigned a random draw from a 

uniform linear distribution between 0 and 1, and then assigned a count of 0 (omission), 1 (accurately 

counted), or 2 (erroneously enumerated) based on their random draw compared with their probabilities 

of erroneous enumeration and omission.  

Finally, these results were then calibrated (or “raked”) to the US Census Bureau’s official 2020 

Census counts to derive the probabilities of miscounts among different groups.  

Hypothetical Full-Count Scenario Methodology: Comparison with a Fair Census  

There are two important ways to estimate census quality: through (1) accuracy, or the correspondence 

of the overall count to the true overall population, and (2) fairness, or whether different groups and 

geographic areas have similar outcomes. Our simulated 2020 Census scenario described above 

assesses accuracy, so to assess fairness we developed a hypothetical full-count scenario for comparison 

purposes in which rates of erroneous enumerations and omissions are essentially zero for all people. 

This is Urban’s measurement of the true US population. From the six-step methodology described 

above, that means that in the hypothetical full-count census scenario, each case in the entire simulation 

is counted once.  
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Apportionment Analysis 

The apportionment of the 435 US House of Representative seats is determined every 10 years based on 

resulting state-level population counts from the decennial census. It is a key function of the decennial 

census; apportionment counts are the first release of data every decade, typically presented to the US 

President on December 31 of a census year. Because of pandemic-related schedule delays, the 2020 

apportionment counts were delivered on April 26, 2021.49 

Apportionment is based on the Method of Equal Proportions, adopted by Congress in 1941. Under 

this approach, the first 50 seats are assigned—one to each state—and the remaining 385 seats are then 

allocated using an iterative process using priority values. 50 

 

In this formula, V represents a priority value; P represents a state’s apportionment population; and 

n represents the number of seats a state would have if it gained one seat. Because every state receives 

at least one seat, calculations begin with n = 2. Consequently, in its first iteration the priority value for 

each state’s second seat would equal its apportionment population divided by the square root of 2(2-1). 

The calculations are then repeated for each value from n = 2 through n = 70. The value 70 is used for 

convenience because no state has more than 60 seats. The resulting values (with associated states) are 

then assembled and ranked to reveal the largest 385 values. This ranking determines which states 

receive the remaining seats. 

Funding Analysis and Hypothetical Full-Count Scenario 

Overall, 316 federal programs encompassing more than $1.5 trillion use census counts in formulas that 

allocate funding to different geographies, largely to states (Reamer 2019). Many funding formulas are 

complex and use the census counts indirectly. But one formula, the Federal Medical Assistance 

Percentage (FMAP), uses population counts more directly to determine the percentage of 

reimbursement a state will receive on seven different federal programs, most notably Medicaid. These 

seven programs constituted 27 percent of census count–based funding and more than $405 billion in 

fiscal year 2017, underscoring how important the FMAP and accurate census counts are for states 

(Reamer 2019). 
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The FMAP formula for a state is: FMAPstate = 1 - ((Per capita incomestate)2 /(Per capita incomeUS.)2 * 

0.45) (Mitchell 2020). Specifically, the FMAP is based on a ratio of the state’s per capita income relative 

to the US total per capita income, which is then adjusted to ensure that no state’s ratio is lower than the 

US ratio. Census counts matter for this process. They are the basis for the population estimates used to 

calculate a state’s per capita income.51 In other words, a state’s total personal income (obtained from 

sources other than the decennial census) is divided by its population estimate to determine each state’s 

per capita income. The resulting per capita income for each state is then used in the FMAP formula. 

Because state incomes and populations change routinely, a new FMAP is calculated for each fiscal year. 

The FMAP guides the reimbursements states receive, and there is a federally mandated range of 

minimum and maximum reimbursements. The minimum and maximum reimbursement rates for states 

range from 50 cents to 83 cents for every dollar spent on programs that use the FMAP ratio (Mitchell 

2020).52 In FY 2021,53 enhanced benefits were offered because of COVID-19, with a minimum of 65 

cents and a maximum of 85 cents reimbursed for every dollar spent.54 Put simply, if a state has an FMAP 

of 70 percent, then 70 cents of every dollar spent by that state on Medicaid would be reimbursed by the 

federal government. 

For FY 2021, 13 states received the minimum reimbursements (FMAPs of 50 percent; enhanced 

FMAPs of 65 percent), including Alaska, California, Colorado, Connecticut, Maryland, Massachusetts, 

Minnesota, New Hampshire, New Jersey, New York, Virginia, Washington, and Wyoming. For states at 

the minimum, year-to-year changes in population counts rarely shift their FMAPs.55 For the other 

states, FMAPs can vary from year to year and population counts may be important. In FY 2021, 

Mississippi had the highest FMAP at 77.76 percent and an enhanced FMAP of 84.43 percent.  

In our report, we explore how changes in the 2020 Census count might theoretically affect each 

state’s FY 2021 FMAP and its resulting Medicaid reimbursements. The exercise in this paper is meant to 

be illustrative and uses the following assumptions: 

 First, we use preliminary 2020 estimates of total state income from the Bureau of Economic 

Analysis (BEA) rather than three-year averages of older data used in the official calculations. 

For example, for the official FY 2021 FMAP calculated by the Department of Health and 

Human Services, incomes from 2016, 2017, and 2018 from the US Bureau of Economic Analysis 

were averaged and used to moderate year-to-year fluctuations (Mitchell 2020).56 We opt to 

use the more recent 2020 preliminary estimates in our analysis. 

 Second, we produce state population estimates from a unique scenario used in these analyses 

that assumes a hypothetical full count for the 2020 Census. To assume a hypothetical full 
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count, we eliminate any probabilities of overcounts or undercounts for the entire US 

population as determined through our simulated 2020 Census count. Thus, we assume 

everyone in the US would be counted accurately and only once. 

 Third, the FMAP is then calculated using both sets of population counts, including the recently 

released census total resident population counts and Urban’s estimates of a hypothetical full 

count for the 2020 Census. State and national estimates from the official 2020 Census counts 

and the hypothetical full count are used in the FMAP per capita income calculations. 

 Finally, we apply the new FMAPs to the most recent data on Medicaid spending for each state 

from 2019, the most recent data available. This final step illustrates the differences in 

reimbursements each state could hypothetically receive in FY 2021.57 

 Of note, we do not include additional adjustments to the FMAP, such as those for COVID-19, or 

other state-specific income- or employer-based considerations.58 

The resulting findings are instructive as to how population counts—particularly if they were fairer 

in the 2020 Census—would theoretically affect federal funding allocations to the states.
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