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A growing set of methods from data science and statistics could fill critical gaps in race 

and ethnicity data by matching, imputing, or otherwise adding demographic and 

locational characteristics to existing datasets. As the potential for appending race and 

ethnicity variables grows, however, so does the risk of ethical violations and potential 

harm to Black, Indigenous, and other people of color (BIPOC).* 

Disaggregating data by race and ethnicity can help shine a light on racialized systems of privilege 

and oppression.1 However, many high-value datasets either don’t report race or ethnicity or have 

missing race and ethnicity data. For example, the lack of race and ethnicity information in credit bureau 

data has inhibited efforts to examine how credit scores affect racial homeownership gaps or to 

challenge the use of credit screens in hiring, while the lack of racial identifiers in federal income tax data 

prevents efforts to assess the racially disparate impact of federal tax policies.2 Given the absence of 

race and ethnicity information, researchers are often forced to choose between using imprecise 

methods to estimate race (such as the predominant race of an individual’s zip code) or forgoing data 

disaggregation altogether.  

As the availability of disaggregated data has grown, and as policymakers increasingly recognize its 

value for identifying and addressing racial disparities, researchers and advocates have called attention 

to associated challenges, such as accurately capturing small racial and ethnic groups; collecting data on 

 
*  Throughout this brief, the authors  use “BIPOC” when generally referring to nonwhite people and communities. 

When discussing a specific demographic group or identity, we opt to name them as specifically as possible and 
note that questions about ethically representing the specific personhood and experiences of diverse individuals 
and communities are central practices in equitable data use. We recognize that “BIPOC” groups racial and ethnic 
groups together, obscuring the specific experiences of each, and we remain committed to using inclusive 
language whenever possible. 
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intersections with class, gender and other identities at smaller disaggregation levels; shifting the focus 

from individual outcomes to structural indicators; and appropriately visualizing racial disparities.3 

Sophisticated methods for generating or appending racial and ethnic identifiers (box 1) share many 

of these broader challenges but also pose distinct risks. While the body of work examining harms and 

harm-mitigation approaches for algorithms and big data in general is considerable,4 it lacks specific 

guidance on the ethical risk areas that data scientists, statisticians, and researchers encounter when 

using imputation, matching, or related methods to fill missing race and ethnicity data. 

BOX 1 

Methods for Generating and Appending Missing Race and Ethnicity Data 

Imputation. Probabilistic methods can help generate new data that maintain statistical properties of the 
“real” data. One widely used technique for imputing race and ethnicity on administrative data is the 
Bayesian Improved Surname Geocoding tool, developed by RAND for the US Department of Health and 
Human Services and also used by the Equal Opportunity Employment Commission (Harris 2020).a Using 
multiple imputation, researchers can analyze variation resulting from the imputation process and, 
drawing from sets of probabilities, determine whether results are robust to the randomness inherent in 
the imputation process.b 

Machine-learning methods. Machine-learning methods can be especially useful when using text data or 
modeling complex, non-linear relationships. For example, the Urban Institute applied machine-learning 
methods to impute property-level zoning density limits (Nechamkin and MacDonald 2019) and impute 
sentiment toward police from tweets (Oglesby-Neal, Tiry, and Kim 2019). Several groups are already 
working on ways to mitigate biases in machine learning, such as the Algorithmic Justice League and 
researchers from the University of Chicago who developed the Aequitas tool.c 

Data linkage. Probabilistic data linkage, popularly known as fuzzy matching, connects information from 
separate sources based on the probability of two records representing the same person or entity, using 
multiple and/or non-unique keys. Urban probabilistically linked names and addresses of Community 
Development Financial Institutions to estimate community development financial flows and linked 
mothers’ and infants’ records to evaluate the Strong Start for Mothers and Newborns initiative (Hill et 
al. 2014).d Data fusion integrates multiple data sources to achieve more accuracy than a single data 
source would (e.g., combining multiple administrative data sources, such as the American Community 
Survey, city surveys, and United States Postal Service data, to understand change in a neighborhood). 

Notes 
a Known as the Medicare Bayesian Improved Surname Geocoding (MBISG) tool (LeRoy et al. 2013), the latest MBISG 2.0 method 

combines name, administrative data, and Census data based on address in a calibrated Bayesian framework (multinomial logistic 

regression model) to estimate probabilities by race and ethnicity for each record in the dataset (Haas et al. 2019).  
b Many public data products use multiple imputation, including the Survey of Income and Program Participation Synthetic Beta, 

the National Survey of Children’s Health (Benedetto, Stinson, and Abowd 2013), and the Survey of Consumer Finances 

(Lindamood, Hanna, and Bi 2007). 
c See also Ziyuan Zhong, “A Tutorial on Fairness in Machine Learning,” towards data science, October 21, 2018, 

https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb. 
d See also “Community Development Financial Flows: How US Counties Compare,” Urban Institute, June 26, 2018, 

https://apps.urban.org/features/community-development-financing/.  

https://www.ajl.org/learn-more
http://www.datasciencepublicpolicy.org/projects/aequitas/
https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb
https://apps.urban.org/features/community-development-financing/
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In November 2020, the Urban Institute’s Racial Equity Analytics Lab and Office of Technology and 

Data Science convened experts from the data science, government, racial justice, and data privacy fields 

to discuss the ethics of using advanced statistical methods to fill gaps in race and ethnicity data (box 2). 

Workshop participants affirmed the demand for disaggregated data, and the strong appetite for tools to 

fill data gaps, while identifying ethical risk areas that data scientists, statisticians, and researchers must 

grapple with when employing advanced techniques for generating these data.  

BOX 2 

Design Thinking Workshop on the Ethics of Imputation and Related Methods 

On November 9, 2020, the Urban Institute held a virtual workshop on the ethics of using imputation and 
related methods to fill missing race and ethnicity data for savings and wealth datasets. We invited 
representatives from local, state, and federal government; justice and privacy advocates; imputation 
experts; consumer financial protection researchers; and organizations representing impacted 
communities, ensuring racial and ethnic diversity among the invitees. Twenty-nine people attended the 
workshop, including representatives from the Urban Institute, MetroLab Network, the New York City 
Department of Consumer and Worker Protection, and the Federal Reserve Bank of Atlanta.  

We used a design thinking workshop format, a collaborative model for convening, engaging, and 
harnessing diverse perspectives and experiences to accelerate problem-solving.a For most of the two-
and-a-half-hour session, participants worked in four breakout groups to identify ethical risks associated 
with using these methods and surface potential risk-mitigation measures. Though the workshop prompt 
asked participants to consider applications and risks related to savings and wealth datasets in detail, 
participants also brainstormed and discussed applications to other high-value datasets that lack race 
and ethnicity identifiers. At the end of the workshop, breakout groups presented their key findings, and 
the whole group discussed cross-cutting themes. Immediately following the workshop, the authors 
synthesized key findings from each breakout group and shared them with the participants for review 
and comment.  

The authors thank the following individuals who generously participated in the workshop and 
shared their insights with us. Workshop participants also provided invaluable feedback on early 
versions of this brief. Views expressed do not reflect the position of their organizations listed below. 

Zayne Abdessalam from the New York City Department of Consumer and Worker Protection 

Jasmine Burnett and Donta Council from the Federal Reserve Bank of Atlanta 

Hector Dominguez from the City of Portland 

Kimberly D. Lucas from MetroLab Network 

Kevin Moore from the Federal Reserve 

Shena Ashley, Claire Bowen, Breno Braga, Steven Brown, Ilham Dehry, LesLeigh Ford, Graham 
MacDonald, Signe-Mary McKernan, Michael Neal, Khuloud Odeh, Jamila Patterson, Kathryn L.S. 
Pettit, and Aaron Williams from the Urban Institute 

We are also thankful to those workshop participants who chose to remain anonymous and are thus 
not named above, but who contributed valuable time and insights to our process. 

Note 
a See Katrina Ballard, “How Can Human-Centered Design Uncover Policy Solutions?” Data@Urban (blog), Urban Institute, January 

14, 2020, https://urban-institute.medium.com/how-can-human-centered-design-uncover-policy-solutions-4ebf2ec0d89b. 

https://www.urban.org/racial-equity-analytics-lab
https://urban-institute.medium.com/how-can-human-centered-design-uncover-policy-solutions-4ebf2ec0d89b
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This brief summarizes five ethical risk areas that surfaced during the workshop. These risks pose 

serious harms to BIPOC and erode trust in government and other data stewards. While not exhaustive, 

this list provides researchers with a glimpse into where they should proceed with caution—as well as 

where the field must collaborate to develop equity-centered tools and resources. Workshop 

participants highlighted the need for a code of conduct that builds on these identified risks and 

stipulates ethical norms and guidelines on the use of emerging techniques for appending race and 

ethnicity to data.  

Excluding People and Communities of Color from 

Ownership of Their Data and from Decisions on Research 

Process and Methods 

Power dynamics between individuals whose data are being collected and the organizations who are 

funding, collecting, and using the data prevent people from exercising authority over their own data.5 

Failing to provide channels for critical individual and community-level input increases the likelihood 

that researchers will overlook how individuals and communities connect to and identify with the 

research process.  

Although this risk is present in all research featuring people and communities, workshop 

participants reported that researchers working primarily with advanced statistical techniques and 

secondary data (rather than directly with people in community) need more guidance on how to build 

community engagement principles,6 stakeholder vetting opportunities,7 and intentional participatory 

mechanisms into their work.8 In addition to best practices kits and self-assessment tools that help 

research teams incorporate engagement principles into advanced analytics and “big data” projects,9 

workshop participants said that the field needs to develop models for data ownership and governance 

that give BIPOC more authority over their data. Direct engagement is likely not possible nor desirable 

for every researcher analyzing quantitative data, but researchers should pursue opportunities to 

incorporate the perspectives of affected communities within the project, for instance through guidance 

provided by the data collector or with the assistance of other researchers more proximate to the 

affected communities. Planning for community engagement that is appropriate to the type and context 

of each analytic project can help researchers equitably navigate the risks and trade-offs throughout the 

research process. 

Violating Individual Informed Consent  

Separate from community engagement, informed individual consent is traditionally a requirement and 

expectation in any research involving people.10 The collection and dissemination of multiple sources of 

anonymized secondary data, however, can dilute or circumvent traditional informed consent 

processes.11 Historically, BIPOC have been systematically deprived of opportunities for informed 

consent in research.12 Even today, researchers overrepresent Black patients in US Food and Drug 
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Administration-approved clinical trials that do not require informed consent.13 As identified in this brief, 

imputation and related methods carry material risks for individuals and communities. Someone who 

consented to provide sensitive financial or health data may not have done so if plans to append race or 

ethnicity to their data were fully disclosed. Additionally, “informed refusal” to participate or provide 

data is a meaningful personal and political choice.14 If someone declines to report their race or ethnicity 

in a survey, later generating that value through advanced analytical methods overrides that initial 

refusal. 

Obtaining and enforcing more robust individual consent practices while preserving the availability 

of some secondary data for research comes with practical challenges. An individual’s risk of exposure 

and the potential uses of secondary data may not be known ahead of time. Moreover, even if risks are 

more explicitly acknowledged in the “fine print” of an informed consent procedure, this does not 

guarantee that people will take full notice, understand the risks, or feel empowered to say no (e.g., if the 

consent process is connected to an application for a benefit program or other needed service).  

At minimum, workshop participants expressed a need for clearer language and individual notice.15 

More ambitiously, data collectors should establish data governance and sharing practices that ensure 

data are not used beyond the consented-to purposes. For researchers who use secondary data, 

workshop participants expressed a need for more guidance on how to incorporate individual voice and 

choice into their analytics projects.  

Compromising Individual Privacy or Confidentiality 

When researchers append racial or ethnic identifiers to other identifiers at small units of geography, 

individuals are at increased risk of re-identification,16 even if those datasets have previously been 

anonymized.17 To address these concerns, researchers can aggregate data, reporting only on larger 

geographies or on combined racial and ethnic groups. They can also use methods for generating 

synthetic data that preserve statistical properties of the original data while adding enough “noise” to 

preserve privacy. In both cases, researchers must make important trade-offs between privacy and 

accuracy. 

Workshop participants said that the possibility of re-identification, either through linking of 

multiple sources or by imputation,18 needs to be more explicitly acknowledged in informed consent 

procedures.19  For research teams who rely on secondary data, workshop participants identified a need 

for additional tools, like privacy impact assessments,20 to help researchers and assess and mitigate 

privacy risks specific to their projects.  
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Producing Inaccurate Estimates and Misleading 

Conclusions  

Imputation and related methods often come with a degree of statistical uncertainty. But if imputed race 

and ethnicity variables do not meaningfully predict actual race and ethnicity, the conclusions 

policymakers draw from the imputed data could lead to misinformed policy choices that harm BIPOC. 

Workshop participants said that researchers need to produce and share estimates of the variation in 

their imputation process and analyze whether their results are robust to that variation.  

The level of variability is likely higher for smaller race and ethnicity subgroups because fewer 

observations are being imputed and the data used to perform the imputation are more variable. For 

example, the Bayesian Improved Surname Geocoding tool is less accurate for Native American and 

multiracial people than for Black or Asian people (LeRoy et al. 2013). Researchers will encounter a 

trade-off between fully representing specific race and ethnicity subgroups in the data (while tolerating 

higher levels of variation and uncertainty) and aggregating those subgroups (producing less variable 

results, but also concealing important heterogeneity across subgroups). 

Workshop participants identified a need for guidelines on defining acceptable ranges of uncertainty 

for different use cases. Whether uncertain estimates can be used to responsibly inform policy will vary 

depending on the objective of the research and limits of the data in question. Additionally, participants 

emphasized the importance of communicating and reflecting this uncertainty in final research products 

so policymaking audiences understand the risks related to uncertainty in the dataset.  

Additionally, methods like imputation only produce results as accurate as the underlying data, 

which often reflect structural disparities and racial biases.21 Linking biased datasets together, using 

them to power data-driven decision systems, or training predictive algorithms with them can magnify 

erroneous results. For example, a lack of diversity in publicly available image datasets has contributed 

to racial bias in facial recognition systems, which use those data to train and evaluate their underlying 

algorithms.22 Similarly, a significant undercount of Black and Latinx populations in the 2020 Census 

could lead to bias in algorithms that use Census data to produce and append racial identifiers.23 In a 

different example, in 2020, the California Attorney General revoked law enforcement departments’ 

access to a database of suspected gang members because of pervasive errors. Gang affiliations had been 

assigned using largely unsubstantiated (and, in some cases, demonstrably falsified) reports from 

individual law enforcement officers, reflecting significant racial bias.24 Using any such data to inform 

algorithmic approaches, as Chicago similarly did for predicting gun crime,25 will produce racially biased 

results.26  

Before incorporating data into any imputation, matching, or machine-learning process, researchers 

need to understand how those data are collected and for what purpose. Workshop participants 

identified a need for more routine and robust quality assurance processes, stakeholder input 

mechanisms, and continuous review of underlying data and their analytic outputs to help identify biases. 

Developing more verification tools like the Urban Institute’s Spatial Equity Data Tool may, for example, 
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help researchers identify which neighborhoods and demographic groups are underrepresented and 

overrepresented in certain datasets.27 

Generating Data for Purposes That Harm People or 

Communities of Color 

Datasets that exclude race and ethnicity may do so for good reason. For example, the federal 

government purposefully prohibits credit bureaus from collecting data on race and ethnicity to protect 

against discriminatory lending.28 Workshop participants expressed a strong concern that imputed, or 

otherwise appended, racial and ethnic identifiers could be weaponized against BIPOC.  

This concern drives at the heart of a larger debate about the responsible use and presentation of 

racially disaggregated data. Any tools that empower disaggregation, including imputation and related 

methods, can contribute to racist narratives if the data reinforce harmful stereotypes about BIPOC that 

lead to discrimination against groups and neighborhoods. This can happen either through the selection 

and visual presentation of the data or through framing racially disparate outcomes as the result of 

individual choices and behaviors rather than structural forces.29 

Workshop participants also expressed specific misgivings about imputation, matching, and other 

methods for linking highly sensitive, personally identifiable financial or health data (for example) to an 

individual’s race and ethnicity. Linked credit bureau data, for example, could be used punitively to 

reinforce racially discriminatory lending practices or target predatory products.30 Meanwhile, calls to 

“personalize law” based on an individual’s data footprint, or to personalize medicine based on race and 

ethnicity, provide opportunities for imputed datasets to advance racial stereotyping and discrimination 

in criminal justice, medicine, and financial services.31 In efforts to comply with President Trump’s 

executive order on citizenship data, after federal courts blocked the administration’s attempt to add a 

citizenship question to the 2020 Census questionnaire, the US Census Bureau considered whether it 

could determine individual citizenship status through linked government datasets.32 Even if individual 

citizenship estimates were kept confidential,33 many worried that public block-level estimates could 

help target deportation raids or inform redistricting efforts that would deprive noncitizens of political 

representation.34 The Census Bureau is no longer pursuing this effort.35 

Workshop participants agreed that sharing and vetting analytic methods with community 

representatives who have a stake in the research process is a critical component of an equity-centered 

approach. They also identified a tension between the need for openness in data and methods (which 

enables different community stakeholders to identify biases and, when necessary, intervene to prevent 

ethical violations) and the need to protect against potential misuse of BIPOC data (which could occur if 

providing unfettered access those data or methods). Workshop participants expressed a need for 

thoughtful principles on—or an independent entity that can help govern—when, how, and to whom 

sensitive data containing individual race and ethnicity variables are released. 
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Conclusion and Next Steps 

The risks detailed in this brief provide a small window into the ethical questions that researchers and 

data scientists need to consider before embarking on efforts to attach racial and ethnic identifiers to 

data. While this brief has focused on the many roadblocks to ethically generating and appending missing 

race and ethnicity data, there are also material and ethical costs of not filling these gaps, including 

obscuring ongoing patterns of racial discrimination and perpetuating invisibility for communities of 

color who do not see themselves represented in data.36  

Researchers seeking to ethically generate and append missing race and ethnicity data need further 

guidance and resources to mitigate the ethical risks as best as possible and navigate the numerous 

trade-offs between and among different ethical priorities surfaced in this document—trade-offs that are 

rarely clear-cut. As Urban’s Racial Equity Analytics Lab develops its capacity to generate and deploy 

sophisticated data on race and ethnicity, it will build on these workshop learnings in our forthcoming 

work to explore approaches and best practices that mitigate ethical risk, center equity, and build 

empathy for people and communities. 
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