
RE S E A R C H  RE P O R T  

Using Machine Learning to Estimate 
Racially Disaggregated Wealth Data at 
the Local Level 
Aaron R. Williams Mingli Zhong Breno Braga  

February 2023 

 

W E A L T H  A N D  F I N A N C I A L  W E L L - B E I N G  



 

A B O U T T H E  U R BA N  I N S T I T U TE   
The nonprofit Urban Institute is a leading research organization dedicated to developing evidence-based insights 
that improve people’s lives and strengthen communities. For 50 years, Urban has been the trusted source for 
rigorous analysis of complex social and economic issues; strategic advice to policymakers, philanthropists, and 
practitioners; and new, promising ideas that expand opportunities for all. Our work inspires effective decisions that 
advance fairness and enhance the well-being of people and places. 

Copyright © February 2023. Urban Institute. Permission is granted for reproduction of this file, with attribution to 
the Urban Institute. Cover image by Tim Meko. 



Contents 
Acknowledgments iv 

Using Machine Learning to Estimate Racially Disaggregated Wealth Data at the Local Level 1 
Data Sources 2 

2018 Survey of Income and Program Participation 3 
2019 American Community Survey 3 

Methodology 4 
Analytical Approach 4 
Analytical Process 6 
Generating Statistics by Race and Ethnicity 13 

Results 
Liquid Assets 14 
Net Worth 19 
Unequal Opportunities by Race and Ethnicity 26 

Conclusion and Discussion 28 

Appendix A. CFED (Corporation for Enterprise Development) Imputations 32 

Appendix B. Model Descriptions 34 

Notes 36 

References 37 

About the Authors 38 

Statement of Independence 39 

 



 i v  A C K N O W L E D G M E N T S  
 

Acknowledgments  
This report was funded by a grant from JPMorgan Chase & Co.. We are grateful to them and to all our 

funders, who make it possible for Urban to advance its mission.  

The views expressed are those of the authors and should not be attributed to the Urban Institute, 

its trustees, or its funders. Funders do not determine research findings or the insights and 

recommendations of Urban experts. Further information on the Urban Institute’s funding principles is 

available at urban.org/fundingprinciples. 

We are grateful to Signe-Mary McKernan, Alena Stern, Oriya Cohen, and Courtney Jones for their 

input; Alex Carther for excellent technical assistance; Madeline Pickens and Vincent Pancini for their 

thorough code review; and Liza Hagerman for her copyedits. 

http://www.urban.org/fundingprinciples


Using Machine Learning to Estimate 
Racially Disaggregated Wealth Data 
at the Local Level 
Household wealth data at the local level are generally not widely available, especially statistics 

disaggregated by race and ethnicity. Using machine learning, we estimate net worth and emergency 

savings data at the local, city, state, and national levels. We also disaggregate our estimates by racial 

and ethnic groups at the city, state, and national levels. We use machine-learning models trained on the 

Survey of Income and Program Participation (SIPP), a survey with detailed wealth information but too 

few observations for local estimates, to estimate emergency savings and net worth using the American 

Community Survey (ACS), which allows for state and local estimation. The imputations allow us to 

estimate the proportion of households with more than $2,000 in emergency savings and median net 

worth at the household level. We then aggregate household-level data to different geographic levels.  

Household wealth is a safety net. It protects families from unexpected expenses such as replacing a 

water heater and income shocks such as a jobless spell. Household wealth is also a springboard. It gives 

families the opportunities to invest in wealth-building opportunities like starting a small business or 

moving to an area with more opportunity.  

Understanding wealth is necessary for uncovering the barriers to wealth generation and designing 

policies that unlock opportunity for everyone. Two datasets, the Federal Reserve Board’s Survey of 

Consumer Finances and the US Census Bureau’s Survey of Income and Program Participation (SIPP), 

have detailed information about wealth and are typically used for national or state estimates (Bhutta et 

al. 2020). Unfortunately, little information is widely available about wealth at the local level, especially 

disaggregated by different racial and ethnic groups. This is because household surveys with adequate 

sample sizes for local estimation, such as the American Community Survey (ACS), do not include 

detailed information about wealth.  

We employ machine learning to leverage a smaller nationally representative survey with detailed 

questions about household wealth to impute household wealth onto the ACS, which allows for small 

area estimates. We released this novel dataset with the Urban Institute’s “Financial Health and Wealth 

Dashboard” in 2022.1 
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In particular, we use machine learning to estimate median net worth and the proportion of 

households with at least $2,000 emergency savings at the local level defined as Public Use Microdata 

Areas (PUMAs). We provide financial measures not only for a city, but also for subregions (Public Use 

Microdata Areas, or PUMAS) within many cities and for different racial and ethnic groups. City leaders 

and policymakers are able to use the dashboard to identify wealth disparities within cities. Because 

household wealth measures for subregions within cities are not typically available in public survey data, 

we use a machine-learning method to fill the gap in the existing survey data.  

We use household measures including net worth and emergency savings to better understand 

households’ wealth. Liquid assets—the sum of assets in checking accounts, stocks, bonds, and other 

liquid savings accounts—can indicate households’ resilience and ability to bounce back from financial 

shocks. Net worth—total assets minus total debt—can provide an overview of households’ economic 

well-being and their ability to pursue new opportunities.  

Overall, the 2022 financial health dashboard provides firsthand data and analysis to city leaders 

and policymakers for a better understanding of financial health, financial resilience, wealth, and debt 

within local regions in their cities and counties. They will also be able to compare their cities and 

counties with neighboring cities and counties.  

This works builds on previous asset and wealth imputation research. Using 2014 data, the 

Prosperity Now Asset Scorecard estimated the asset poverty rate, liquid asset poverty rate, and share 

of households with liquid assets for many cities in the US. The Federal Reserve Bank of “St. Louis’s Real 

State of Family Wealth”2 provides national-level average wealth for various demographic groups 

overtime. Using 2013 data, Ratcliffe and colleagues (2017) estimated the shares of unbanked and 

underbanked populations for different PUMAs in New York City. This project advances this literature 

by (1) looking at a broader set of asset outcomes; (2) estimating assets at the PUMA level throughout 

the country; (3) using more recent data than the literature; and (4) disaggregating the estimates by race 

and ethnicity when possible. Because PUMA boundaries are often smaller than city boundaries, our 

analysis sheds light on wealth disparities within cities. 

Data Sources 

We use detailed wealth data and socioeconomic information from the SIPP to train machine-learning 

models. The models’ predictors include socioeconomic and financial variables from the SIPP that are 

also available in the ACS. The models’ outcomes are liquid assets and net worth. Taking the models as 
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given, we then estimate the liquid assets and net worth for all households in the ACS. The ACS has more 

granular geographic information than the SIPP but lacks detailed wealth outcomes. The ACS sample 

covers all the PUMAs in each city and county. Given the predicted wealth measures for the ACS sample, 

we finally provide summary statistics for net worth and liquid assets for each subregion in cities and 

counties.  

2018 Survey of Income and Program Participation 

The SIPP is a household survey of demographic, economic, and government program participation 

information administered by the US Census Bureau. The survey is nationally representative and is 

representative of some, but not all, states. The SIPP is a panel dataset with monthly questions asked 

once a year. The survey is an important source of information about assets and its questionnaire asks 

detailed questions about government securities, checking accounts, savings accounts, money market 

accounts or funds, certificates of deposit, municipal and corporate bonds, stocks, mutual funds, 

retirement accounts, annuities, trusts, and rental properties.  

We construct liquid assets and net worth from about a dozen individual questions about assets. 

Liquid assets include transaction accounts and interest-earning accounts such as checking accounts, 

savings accounts, certificates of deposit, money market accounts, government securities, municipal and 

corporate bonds, mutual funds, and stocks. Net worth is the sum of asset values minus the sum of 

liabilities for a household. We include 26,548 heads of households as our core sample from the 2018 

SIPP.  

2019 American Community Survey 

The ACS is a household survey of demographic, social, economic, and housing characteristics 

administered by the US Census Bureau on a rolling basis. Survey responses are pooled from all 12 

months in a year to create an annual dataset. The survey does not include information about liquid 

assets or net worth, but it shares many common variables with the SIPP that predict wealth.  

The Bureau receives more than 2 million responses to the survey each year, which makes it a useful 

source of data for small area estimation. We use a Public Use Microdata Sample (PUMS) accessed 

through IPUMS, which contains 1,217,716 households (Ruggles 2021). While published ACS tables 

contain information about census tracts with about 4,000 to 8,000 people each, PUMS data are limited 

to Public Use Microdata Areas (PUMAs). PUMAs are census-generated geographic areas that do not 
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overlap, do not cross state lines, and contain 100,000 or more people each. In some places, PUMAs are 

larger than entire counties, but in large cities like New York or Chicago that contain many PUMAs, 

PUMAs can be thought of as large neighborhoods.  

Methodology  

Analytical Approach 

Our general approach is to leverage the detailed variables in the SIPP to impute values onto the ACS, 

which contains enough households for small area estimation (figure 1). The approach of using a smaller, 

more detailed survey to impute variables onto a larger, less detailed dataset is also employed by 

Blumenstock, Cadamuro, and On (2015), who impute wealth onto administrative cell phone metadata in 

Rwanda. We estimate models on the SIPP, which has detailed information about household 

demographics, income, state of residence, and wealth and then predict wealth information using the 

ACS, which has detailed information about demographics and income. After imputing household 

microdata onto the ACS, we summarize liquid assets as the proportion of households in a PUMA with 

more than $2,000 in liquid assets, and we summarize net worth as median net worth for households in a 

PUMA. We also summarize this information at the city, state, and national levels. 

FIGURE 1  

The Big Idea for Our Imputation Approach  

 

Source: Authors’ calculations.  

 



U S I N G  M A C H I N E  L E A R N I N G  T O  E S T I M A T E  R A C I A L L Y  D I S A G G R E G A T E D  W E A L T H  D A T A  A T  
T H E  L O C A L  L E V E L  

5   

 

Our project builds on “Generating Household Wealth and Financial Access Estimates for Local 

Geographies” (CFED 2015). The authors imputed the share of households in asset poverty and the 

share of households in liquid asset poverty using the SIPP and ACS. We build on their work in a few 

ways. First, we use a different measure for liquid assets, and we add median net worth. Second, we use 

flexible machine-learning models that often outperform parametric models like linear regression. Third, 

we leverage a robust literature about missing data and imputation to create better imputations. Overall, 

their imputations attenuated toward the national average, with low-wealth states having too much 

imputed wealth and high-wealth states having too little imputed wealth (see appendix A). 

In the following sections, we offer a summary of concepts from machine learning and missing data 

imputation that are key features of our analysis. 

IMPUTE MICRODATA; THEN AGGREGATE 

We have household-level ACS data, but we are interested in quantities estimated for Public Use 

Microdata Areas (PUMAs). PUMAs are census-generated geographic areas that do not overlap, do not 

cross state lines, and contain 100,000 or more people each. One approach would be to build models that 

make PUMA-level estimates. Instead, we opt to impute values at the household level and then 

aggregate the imputed information to the PUMA level. This better uses the detailed information 

available at the household level for the SIPP and ACS.  

MULTIPLE IMPUTATION 

We use multiple imputation (Rubin 1978), an approach where multiple values are predicted for each 

unit with missing data, to observe the variation in our prediction. However, we do not combine these 

estimates into formal standard errors for our quantities of interest. The final values in the dashboard 

are the means of the multiple imputations for each geography. 

STOCHASTIC IMPUTATION 

Stochastic imputations are imputations with a random error. In our case, we sample from a conditional 

distribution instead of using conditional mean imputation, such as the predicted value from a linear 

regression model. This offers two advantages. First, stochastic imputation is necessary for multiple 

imputations; otherwise, every imputation for a given record would have the same imputed value. 

Second, stochastic imputation is more likely to have adequate sample variance. Little and Rubin 

(2020) note that conditional mean imputation distorts sample variances and covariances and leads to 

bias when the tails of distributions are being studied. “For example, an imputation method that imputes 

conditional means for incomes tends to underestimate the percentage of units in poverty” (page 73). 
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This can be seen in the CFED results in appendix A, where the states in the tails of the distribution are 

too close to the overall mean. 

SEQUENTIAL MULTIPLE IMPUTATION 

We are interested in imputing two variables: liquid assets and net worth. We would sacrifice valuable 

information if we independently imputed the variables. We employ a fully conditional specification—

like Raghunathan and colleagues (2001) and van Buuren and colleagues (2006) do—to impute a joint 

distribution such that 

𝑓𝑓(𝑋𝑋1,𝑋𝑋2 ∣∣ 𝜃𝜃1,𝜃𝜃2 )  =  𝑓𝑓1(𝑋𝑋1 ∣∣ 𝜃𝜃1 )  ∙ 𝑓𝑓2(𝑋𝑋2 ∣∣ 𝑋𝑋1,𝜃𝜃2 ) 

where Xi are the variables to be imputed and θi are model parameters such as regression 

coefficients. Here, the left side is a joint distribution, and the right side is a marginal distribution times a 

conditional distribution. We impute liquid assets and then impute net worth conditional on liquid assets 

and other predictors. We only iterate the model estimation once. 

NONPARAMETRIC MACHINE-LEARNING MODELS 

The missing data literature focuses on parametric modeling and embraces Bayesian modeling because 

posterior predictive distributions are natural for stochastic imputation because posterior predictive 

distributions represent a conditional distribution instead of a conditional mean. Instead, we use 

nonparametric models from machine learning, including classification and regression trees (Breiman et 

al. 1984) and random forests (Breiman 2001). We focus on tree-based models because they work well 

with sampling weights, are easy to tune, and are easy to sample. Nonparametric models sometimes 

sacrifice global interpretability—how easy it is to understand how a trained model generally makes 

predictions—but they can outperform parametric models for prediction. We modify algorithms so they 

generate stochastic predictions.  

Analytical Process 

This section briefly outlines the process we use to estimate models on the SIPP data and impute liquid 

assets and net worth onto the ACS. 

STEP 1: PREPARE THE DATA 

We pull SIPP data from the US Census Bureau website. We drop 38 observations where the head of 

household is younger than age 18. Also, we create an ordinal education–level variable. 
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We then pull ACS data from IPUMS. We create an ordinal education variable that matches the SIPP. 

We simplify race and ethnicity categories and resolve missing values for the foreign-born indicator. We 

also convert the top-coded category for “ages 90+” to numeric age 90 so the entire age variable can be 

treated as numeric.  

STEP 2: SPLIT DATA  

We want to estimate models on the SIPP that make good predictions on the ACS. In machine learning, it 

is easy to overfit the data used to estimate models and end up with estimated models that do not 

generalize to the prediction task of interest. We partition our data into a training dataset with 80 

percent of observations from the SIPP and a testing dataset with 20 percent of observations from the 

SIPP. The datasets are disjointed and exhaustive. We do not touch the testing data until model selection 

is complete, at which point we can estimate the out-of-sample error. 

For model selection, we further split our training data into 10 disjointed and exhaustive samples (or 

“folds”) and employ v-fold cross validation to avoid overfitting our models (Blum, Kalai, and Langford 

1999; Burman 1989). For each outcome variable and model specification, we estimate the model 10 

times using 9 of the folds and then estimate our error metric on the remaining fold. We call the folds 

used to train a model “analysis” data and the remaining fold used to test a model “assessment” data. This 

gives us estimates of out-of-sample error rates that can be used to pick the “best” model. Figure 2 shows 

how we split the data, and figure 3 shows the v-fold cross-validation process. 
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FIGURE 2  

How We Use Our Data 

 

Source: Authors’ calculations.  
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FIGURE 3 

V-Fold Cross Validation 

 

Source: Authors’ calculations. 

STEP 3: CHOOSE ERROR METRICS 

The usefulness of an error metric depends on the application of a model. We release household data 

aggregated to different geographies. Therefore, we care about summary statistics of our household-

level data. We use several error metrics to pick the “best” model: 

 Weighted threshold error: The difference between the true and predicted weighted 

proportions of households with a chosen asset greater than a chosen threshold. For example, 

this metric estimates how well the predicted data recreate the proportion of households with 

more than $2,000 in liquid assets. 

 Weighted 25th percentile error: The difference between the true and predicted weighted 25th 

percentile for a chosen asset. 

 Weighted 50th percentile error: The difference between the true and predicted weighted 

median for a chosen asset. 

 Weighted 75th percentile error: The difference between the true and predicted weighted 75th 

percentile for a chosen asset. 

We use weighted threshold error and weighted 50th percentile error because they connect directly 

to the statistic we include in the dashboard. We also look at weighted 25th percentile error and 

weighted 75th percentile error to see if it is feasible to release other statistics. 
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All error metrics are weighted using the household weights from the SIPP. We use the average 

metric from the 10 iterations of the cross validation to pick the best model, but we allow ourselves to 

override this decision if error metrics vary a lot from fold-to-fold in cross validation.  

STEP 4: ESTIMATE THE FIRST ROUND OF MODELS 

We estimate two models for step 4—one for each outcome variable: (1) liquid assets and (2) net worth. 

We estimate three important considerations for each model: 

1. The potential predictors included in the model: Each outcome variable needs its own 

predictive model. Both models have the following potential predictors: 

a. household income 

b. education level of the head of household (unordered): less than high school (HS), HS or 

GED, some college, bachelor’s degree, and a postgraduate degree 

c. education level of the head of household (ordered): integers where 1 = less than HS, 2 = HS 

or GED, 3 = some college or a bachelor’s degree, and 4 = a postgraduate degree 

d. race/ethnicity for the head of household: Asian, non-Hispanic; Black, non-Hispanic; other, 

non-Hispanic; and White, non-Hispanic 

e. gender of the head of household 

f. age of the head of household 

g. indicator for if the head of household is single 

h. indicator for if the head of household is foreign born 

i. indicator for metro area 

j. state of residence 

k. number of adults in household 

l. number of dependents in household 

m. home value 

n. indicator for homeownership 

o. imputed liquid assets (only for the net worth model in step 5) 

2. The algorithm and its hyperparameters: We test decision trees and random forest models for 

each outcome variable. Decision trees are nonparametric models for classification and 

regression that include feature selection and work well where linear models fall short. Decision 

trees are quick to estimate and easy to understand, but they tend to overfit the data. See 

appendix B for a technical explanation of decision trees and random forests.  
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Random forest models are ensembles of decision trees that take longer to estimate but 

tend to not overfit the data and work well “out-of-the-box.” A random forest is an ensemble of 

ntree decision trees where each tree is estimated on a bootstrap sample of the training data 

and each split in the decision tree is selected by only considering mtry of the predictors 

included in the model. The bootstrap sampling and limitation on predictors considered 

introduces randomness and decorrelates the individual decision trees. The depth of each tree is 

determined by min_n.  

We experiment with several variations of unweighted and weighted random forests. We 

use traditional random forests. Random forests typically make conditional mean predictions by 

averaging the ntree predictions from the forest. We use quantile random forests, which make 

conditional quantile predictions. In our case, we focus on the median, or 50th percentile, 

predicted value.  

 Conditional mean imputation results in imputed values with distorted sample variance and 

too few values in the tails of the distribution (Little and Rubin 2020). Conditional median 

imputation suffers the same limitations. So we randomly sample a predicted value from the 

vector of ntree predictions available in the random forest model. This approximates a posterior 

predictive distribution and leads to better results. For the best model, which is a type of random 

forest model, we hyperparameter tune ntree, mtry, and min_n, a process of trying different 

parameter values, to achieve the best model performance.  

3. Feature and target engineering: We run through a set of preprocessing steps each time we 

estimate a model. We repeat this process for each v-fold cross-validation step, instead of once 

at the beginning of the machine-learning process, to avoid data leakage because some 

preprocessing steps are sample dependent. Data leakage is any time data outside of the 

training data are used to estimate a model. Data leakage results in underestimates of out-of-

sample error metrics. For example, if we need to center a variable, the overall SIPP mean would 

include observations from the testing data and cause data leakage. Our preprocessing steps are 

as follows: 

a. drop zero or near-zero variance predictors 

b. impute missing values for predictors—we use K Nearest-Neighbors imputation for missing 

values for Metro, the only variable with missing values; because imputation is sample-

dependent, we repeat this process within cross validation to prevent data leakage  
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c. both dependent variables are right skewed—we apply Yeo-Johnson transformations to 

deemphasize outliers (Yeo and Johnson 2000); the lambda parameter for Yeo-Johnson 

transformations is sample-dependent; we estimate lambda during cross validation to 

prevent data leakage 

d. dummy encode categorical features 

In addition to the model-selection metrics outlined above, we examine variable importance to 

assess whether the most important predictors are sensible given our subject-matter knowledge. 

Variable importance is a measure of how much a predictor reduces the heterogeneity of nodes. Variable 

importance can be biased and can overstate the impact of continuous predictors. The variable 

importance matches our subject-matter knowledge. For example, other measures of wealth and 

household income are the most important predictors for wealth. We now discuss each model.  

Liquid assets is the most straightforward of the two variables to model. Random forest models with 

sample imputed values outperform the other models of liquid assets for most parameterizations. The 

imputed weighted 75th percentile is systematically low, but the error is minor and the only metric of 

interest is the proportion of households with more than $2,000 in liquid assets.  

Net worth can be negative and has larger outliers than the other variables. The models without 

liquid assets as a predictor are generally poor. They systematically overestimate the weighted median 

and the weighted 75th percentile.  

Based on these results, we decide to impute liquid assets and then net worth.  

STEP 5: ESTIMATE THE SECOND MODEL  

We are interested in modeling the joint distribution of liquid assets and net worth. In addition to 

resulting in a sensible relationship between liquid assets and net worth, modeling the joint distribution 

means we can leverage predictions from the first model to improve the second model. 

We use a sequential imputation approach for liquid assets and net worth. In sequential imputation 

methods, the order of imputations usually goes from the variable with the lowest share of values that 

are missing to the variable with the highest share of values that are missing (Rubin and Schafer 1990). In 

our case, all values are missing for liquid assets and family wealth on the ACS.  

We impute liquid assets first because the initial model for liquid assets far outperforms the initial 

model for net worth. We then repeat the model estimation process from step 4 for net worth with 

imputed liquid assets as a predictor. The addition of liquid assets as a predictor in the model for net 

worth improves the model for net worth. 
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STEP 6: ESTIMATE THE GENERALIZATION ERROR (OUT-OF-SAMPLE ERROR) 

We use these two models—the liquid assets model from step 4 and the net worth model from step 5— to 

make predictions on the testing data held out in step 1. We recompute the error metrics for each model 

on the testing data and get an estimate of the generalization error or out-of-sample error. These error 

metrics give us a sense of the error of our predictions for the ACS. 

STEP 7: IMPUTE VALUES ONTO THE ACS 

We have an imputation model for liquid assets and net worth. We use these models to generate 

stochastic imputations for all households in the 2019 ACS. We repeat this process fifteen times and 

then average the imputations.  

In general, the optimal number of implicates for multiple imputation is an open question (van 

Buuren 2018). We look at running mean plots and determine that the average of imputations is stable 

after only a few imputations, and 15 is more than enough.  

STEP 8: SUMMARIZE TO THE PUMA LEVEL 

Finally, we aggregate household-level imputed liquid assets and net worth at the PUMA level. For liquid 

assets, we calculate the weighted proportion of households with at least $2,000 in liquid assets. For net 

worth, we calculate the weighted median net worth. For some cities, we further aggregate these 

PUMAs to the city level. 

Generating Statistics by Race and Ethnicity  

We have imputed liquid assets, imputed net worth, and the observed race/ethnicity for the head of the 

household for each household in the ACS. We calculate the proportion of households with at least 

$2,000 in liquid assets and median net worth for each PUMA conditional on the observed race/ethnicity 

of the head of household to generate statistics by race and ethnicity. We generate estimates for 

households led by people who are Hispanic, non-Hispanic AAPI, non-Hispanic Black, and non-Hispanic 

other races.  

Many PUMAs lack sufficient observations to report statistics disaggregated by race and ethnicity. 

Imputed asset metrics (median net worth and emergency savings) are not reported when the sample 

size is less than 50 or the coefficient of variation is more than 0.4. In addition, for net worth, we did not 

suppress values when the standard error was less than $5,000 when the standard error was less than 

$15,000, and when the CV was less than 0.5. 
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Results 

In this section, we present the following results for each outcome variable:  

 the algorithm that performs best on the training data with cross validation 

 the hyperparameterization that performs best on the training data with cross validation 

 variable importance 

 the out-of-sample error rate estimated on the testing data 

 validation of the imputations against known estimates from other data sources 

Liquid Assets  

The weighted random forest model with sampling performs best when evaluated with cross validation 

on the training. Our outcome of interest is the proportion of households with at least $2,000 in liquid 

assets (figures 4 and 5), but we also assess performance on the median liquid assets for completeness 

(figure 6). Sampling from a conditional distribution dramatically outperforms using a conditional mean 

or conditional median (conditional center). The four conditional distribution models are comparable, 

and we opt for the hyperparameter-tuned model.  
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FIGURE 4 

Conditional Distribution Imputation Outperforms Conditional Center Imputations for Liquid Assets 

 

Source: Authors’ calculations using the 2018 SIPP.  

Notes: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. Results from several models are excluded 

for clarity. 
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FIGURE 5  

Conditional Distribution Imputation Methods Are Comparable for Imputing Liquid Assets 

 

Source: Authors’ calculations using the 2018 SIPP. 

Note: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. 
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FIGURE 6  

Conditional Distribution Imputation Methods Are Comparable for Imputing Median Liquid Assets 

 

Source: Authors’ calculations using the 2018 SIPP. 

Notes: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. Results from several models are excluded 

for clarity. 

Figure 7 shows that household income, home value, and age are the most important predictors for 

predicting liquid assets.  
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FIGURE 7 

Household Income and Home Value Are the Most Important Predictors for Liquid Assets 

 

Source: Authors’ calculations using the 2018 SIPP. 

Notes: Variable importance is measured by the reduction in the sum of squared errors attributable to each variable. Larger bars 

indicate more importance. All values are divided by the maximum variable reduction and represent relative importance. 

The liquid assets results are not very sensitive to hyperparameter tuning. We choose 500 trees, at 

least 5 values in each final node, and consider three variables at each split. 

The final model overestimates the number of households with $2,000 in liquid savings by 0.2 

percentage points and overestimates the weighted median liquid assets by $331 when measured 

against the testing dataset.  

Finally, figure 8 compares the weighted proportion of households with more than $2,000 in liquid 

assets at the state level calculated on values reported in the SIPP and on the imputed ACS values. Our 

imputation methodology follows the trend, but the imputed ACS values are systematically higher than 

the SIPP values. The SIPP is not representative off all states, so state plots with fewer than 200 

observations in the SIPP are colored magenta (see figure 8).  
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FIGURE 8  

Imputed Liquid Assets Closely Matches the SIPP at the State Level 

 

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 

Net Worth  

The weighted random forest model with sampling performs best when evaluated with cross validation 

on the training data. Our outcome of interest is median net worth (figures 9 and 10), but we also 

evaluate our models on the proportion of households with at least $360,000 in net worth for 

completeness (figure 11). Sampling from a conditional distribution dramatically outperforms using a 

conditional mean or conditional median (conditional center). The four conditional distribution models 

are comparable, and we opt for the hyperparameter-tuned model.  
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FIGURE 9 

Conditional Distribution Imputation Outperforms Conditional Center Imputation for Net Worth 

 

Source: Authors’ calculations using the 2018 SIPP. 

Notes: $360,000 in net worth is a threshold comparable with $2,000 in liquid assets. Each fold is a different analysis, or holdout, 

dataset from v-fold cross validation. 
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FIGURE 10 

Conditional Distribution Imputation Methods Are Comparable for Net Worth 

 

Source: Authors’ calculations using the 2018 SIPP. 

Note: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. 
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FIGURE 11 

The Net Worth Imputation Model Performs Well for the Threshold Measure 

 

Source: Authors’ calculations using the 2018 SIPP. 

Note: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. 

We also consider the weighted 25th percentile net worth (figure 12) and weighted 75th percentile 

net worth (figure 13). In both cases, sampling from weighted random forests outperforms other 

approaches.  
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FIGURE 12 

Conditional Distribution Imputation Outperforms Conditional Center Imputation for 25th Percentile 

Net Worth 

 

Source: Authors’ calculations using the 2018 SIPP. 

Note: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. 
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FIGURE 13 

Conditional Distribution Imputation Outperforms Conditional Center Imputation for 75th Percentile 

Net Worth 

 

Source: Authors’ calculations using the 2018 SIPP. 

Note: Each fold is a different analysis, or holdout, dataset from v-fold cross validation. 

For net worth, the hyperparameterization affects model performance when measured by cross 

validation on the training data. Table 1 shows different hyperparameterizations ranked by the average 

error in weighed median. We choose 500 trees, no minimum number of observations in the final node, 

and consider three variables at each split. 
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TABLE 1 

Aggregated Results from Hyperparameter Tuning Sampling from a Random Forest Model 

Rank trees min_n mtry 
Threshold 

error 
Median 

error 
25th percentile 

error 
75th percentile 

error 

1 500 1 4 -0.00974 219 -831 9,411 

2 500 2 6 -0.0101 -397 -617 19,630 

3 500 1 6 -0.0118 1,154 -932 9,751 

4 500 2 5 -0.0165 -1467 -1323 9,938 

5 500 3 5 -0.0125 2,683 -821 24,495 

6 500 3 6 -0.0125 2,808 -993 21,429 

7 500 1 3 -0.0254 2,882 -2006 26,421 

8 500 2 4 -0.0127 3,263 -845 19,145 

9 500 1 5 -0.0135 3,267 -1061 13,402 

10 500 3 4 -0.0153 6,714 -946 20,680 

11 500 2 3 -0.0204 7,982 -1504 18,933 

12 500 3 3 -0.0265 10,637 -1965 30,907 

Source: Authors’ calculations.  

Figure 14 shows that the predicted value of liquid assets, household income, home value, and age 

are the most important predictors for predicting net worth.  

FIGURE 14  

Imputed Liquid Assets and Household Income Are the Most Important Predictors of Net Worth 

 

Source: Authors’ calculations using the 2018 SIPP. 

Notes: Variable importance is measured by the reduction in the sum of squared errors attributable to each variable. Larger bars 

indicate more importance. All values are divided by the maximum variable reduction and represent relative importance.  
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The final model underestimates the number of households with $360,000 in net worth by 1.3 

percentage points and underestimates the weighted median net worth by $2,386 dollar when 

measured against the testing dataset.  

Finally, figure 15 compares the weighted median wealth at the state level calculated from values 

reported in the SIPP and on the imputed ACS values. Our imputation methodology follows the trend, 

but the imputed ACS values are systematically higher than the SIPP values. The SIPP is not 

representative of all states, so state plots with fewer than 200 observations in the SIPP are colored 

magenta (see figure 15). 

FIGURE 15 

Imputed Median Net Worth Matches the SIPP at the State Level 

 

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 

Unequal Opportunities by Race and Ethnicity  

The imputed data can be used to explore the stark differences in liquid assets and net worth in different 

communities. Many of these differences are driven by structural racism and compounded 

disadvantages faced most acutely by Black Americans. Figure 16 shows the proportion of people who 

are Black (left) and the proportion of households with more than $2,000 in liquid assets (right) in 
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PUMAs that touch Cook County, Illinois. The liquid assets variable is grouped into eight groups. The 

pattern is clear. PUMAs with the highest proportion of households with at least $2,000 in liquid assets 

are the PUMAs with the lowest Black, Non-Hispanic population proportions. The PUMAs with the 

lowest proportion of households with at least $2,000 in liquid assets have the highest Black, Non-

Hispanic population proportions. 

FIGURE 16 

Lack of Liquid Assets Is Concentrated in Black Communities in Chicago and Cook County  

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 

Figure 17 shows the proportion of people who are Black (left) and median net worth (right) in PUMAs 

that touch Cook County, Illinois. The net worth variable is grouped into eight groups. The pattern is 

clear. PUMAs with the highest median net worth are the PUMAs with the lowest Black, Non-Hispanic 

population proportions. The PUMAs with the lowest median net worth have the highest Black, Non-

Hispanic population proportions.  
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FIGURE 17 

Lack of Net Worth Is Concentrated in Black Communities in Chicago and Cook County  

 

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 

Conclusion and Discussion  

This report demonstrates a feasible methodology for using detailed wealth information from the SIPP 

and large sample sizes from the ACS to learn about wealth at the local level. This methodology works for 

coarse aggregates like a threshold or median but should not be used for making inferences about 

individual households or complex statistics calculated on the household values.  

We demonstrate with cross validation on the training data that the accuracy of the machine-

learning models is sensitive to modeling decisions. Sampling from weighted random forests provided 

the best results in all instances and was better than sampling from decision trees and much better than 

conditional mean random forests or conditional median random forests.  

Much of the imputation literature focuses on parametric methods, and in particular, Bayesian 

methods. The machine-learning models tested in this methodology make accurate predictions, and 

while they are less interpretable than parametric regression models, we are able to understand their 
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behavior with variables’ importance. However, variable importance should not be thought of as causal 

in any way. Home wealth is predictive of liquid assets and net worth, but that does not mean that home 

wealth causes wealth accumulation or that policymakers should interpret these results as justification 

for encouraging homeownership.  

Figures 8 and 15 demonstrate that there are nontrivial errors when validating the imputed ACS 

against the SIPP at the state level. First, caution should be exercised when looking at these 

visualizations because the SIPP is not reliable for all 50 states and the District of Columbia. The SIPP 

estimates have a sampling error. The imputed ACS estimates have a sampling error and an imputation 

error. Although the ACS has an additional type of error, it has much less of a sampling error than the 

SIPP. For example, Alaska has 47 observations in the SIPP data and 2,257 observations in the ACS data. 

Vermont has 53 observations in the SIPP data and 2,777 observations in the ACS data. We summarize 

data to the PUMA level for our analyses. In our data, PUMAs range from 183 to 1,961 observations with 

a median size of 506 observations. This suggests that while imputation error is a concern for the ACS, a 

sampling error is less of a concern with the ACS than the SIPP.  

Second, the imputed ACS is systematically higher for the liquid assets outcome and the net worth 

outcome. This is likely because important predictors for liquid assets and net worth are systematically 

higher in the ACS than the SIPP. Figure 18 shows higher state medians for income, and figure 19 shows 

higher state medians for home values. In both examples, values above the black diagonal line have 

higher values for the ACS than the SIPP. 
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FIGURE 18 

Median Income Is Systematically Higher in the ACS Than the SIPP 

 

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 

FIGURE 19 

Median Home Value Is Systematically Higher in the ACS Than the SIPP 

 

Source: Authors’ calculations using the 2018 SIPP and 2019 ACS. 
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The modest increases in reported liquid assets and net worth are tolerable and maybe even 

desirable because the SIPP underreports assets. 

We elect to not publish the 25th and 75th percentiles separately. First, this is because we care 

about differences between PUMAs more than the differences within PUMAs. Second, while the errors 

for 25th percentiles were small in dollar terms because the true values are close to zero, the errors for 

75th percentiles were large. In the future, we could use quantile random forests to model the 25th, 

50th, and 75th percentiles separately.  

The SIPP and ACS generate different estimates for many variables. There are also known 

differences between the SIPP and the Federal Reserve Board’s Survey of Consumer Finances, which is 

considered one of the best datasets about wealth (Chen et al. 2018). Calibration is an approach to 

adjusting sampling weights to hit known population totals. We could treat the ACS as known population 

totals and calibrate the SIPP to hit key predictors like income and home value. This would change the 

models estimated on the SIPP. Alternatively, we could treat the SCF as known population totals and 

calibrate the asset outcomes in the SIPP to hit the SCF. This would change the models estimated on the 

SIPP. Finally, we could treat the SCF as known population totals and calibrate the imputed asset 

outcomes onto the ACS to hit the SCF. This would change the statistics calculated using the ACS.  

Finally, we focus on liquid assets and net worth in this analysis, but this methodology could be 

applied to other household finance–related variables with place-based policy considerations. It would 

be useful to apply this methodology with access to workplace retirements like 401(k) and 403(b) 

accounts because many states are considering state-mandated retirement accounts.  
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Appendix A. CFED (Corporation for 
Enterprise Development) 
Imputations 
FIGURE A.1 

The Imputed Asset Poverty State Tabulations Are Too Close to the National Mean 

 

Source: Table B1 in CFED (2015). 
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FIGURE A.2  

The Imputed Liquid Assets Poverty State Tabulations Are Too Close to the National Mean 

 

Source: Table B2 in CFED (2015). 
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Appendix B. Model Descriptions  

Decision Trees 

Decision trees are nonparametric models that use predictor variables to sort observations of an 

outcome variable into relatively homogeneous groups. Decision trees are often called classification 

trees for categorical outcome variables and regression trees for numeric outcome variables. Decision 

trees, or Classification and Regression Trees, were developed by Breiman and colleagues (1984). We 

use the rpart implementation of decision trees. Therneau and Atkinson (2019), the authors of rpart, 

describe how a tree is built as follows: 

 find the variable that best splits the data into two groups; split the data 

 for each subgroup, find the variable that best splits the data into two groups; split the data 

 continue this process until the subgroups reach a user-specified minimum size or until no 

improvement can be made; and 

 optionally, use cross validation to reduce the full tree to avoid overfitting; this is known as 

“pruning” 

The best splits for regression typically minimize the mean-squared error of the resulting nodes 

after each split. Predictions come from the node that corresponds to the observed predictors for an 

observation. For regression trees, the mean of the corresponding final node is typically used, but this 

results in two issues for imputation. First, the mean predictions usually result in imputed values with too 

little variance within an implicate. Second, the mean imputations are deterministic and do not allow for 

multiple imputation. Instead, we sample the predicted value from the corresponding final node to 

impute liquid assets or net worth. 

Random Forests 

Random forest models (Breiman 2001) ensemble—meaning to combine the predictions from many 

models—decision trees. Typically, the process outlined above is repeated 100 to 1,000 times without 

pruning and with two important changes. First, each tree is estimated using a bootstrap sample of the 

training data. This adds a random component into model estimation, but the estimated trees are often 

highly correlated. Second, before each split, a random sample of predictors is considered. Sampling 

decorrelates the trees.  
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The main hyperparameter forests are the number of trees ensembled, the proportion of values 

bootstrapped sampled, and the number of predictors sampled before each split. We determine these 

values through hyperparameter tuning. Bootstrap sampling observations and randomly sampling 

predictors before each split reduces the predictive accuracy of each tree, but the ensemble of many 

imperfect trees often outperforms one decision tree.  

Predictions are traditionally the mean of the predicted values from the ntree decision trees. For 

stochastic imputation, we randomly sample one value from the ntree decision trees. 
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Notes
 
1  See the Urban Institute’s “Financial Health and Wealth Dashboard,” where local-level asset data are released: 

https://apps.urban.org/features/financial-health-wealth-dashboard/ (October 6, 2022).  

2  Ana Hernández Kent and Lowell R. Ricketts, “The Real State of Family Wealth: Quarterly Trends in Average 
Wealth and Demographic Wealth Inequality,” Federal Reserve Bank of St. Louis, November 29, 2022, 
https://www.stlouisfed.org/institute-for-economic-equity/the-real-state-of-family-wealth.  

 

 

https://apps.urban.org/features/financial-health-wealth-dashboard/
https://www.stlouisfed.org/institute-for-economic-equity/the-real-state-of-family-wealth
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