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Decennial Disclosure 
Although collecting more and better data can provide great benefits to society, such as furthering 

medical research or targeting investments to those most in need, data privacy concerns surface from 

those charged with protecting data when that information can be de-anonymized and used 

maliciously.  

For example, the US Census Bureau conducted a simulated attack on the 2010 Decennial Census 

and discovered they could reidentify about one-sixth of the US population using publicly available 

data (such as name, sex, and age) from external sources, like public social media profiles (Leclerc 

2019). This type of attack on the 2020 Decennial Census has the potential to be even more disclosive 

because of the detailed information collected, such as more race and ethnicity categories, that could 

lead to more individuals being identified with great specificity. The reconstruction attack results and 

the more detailed information available in the decennial census motivated the Census Bureau to 

update their Disclosure Avoidance System (DAS) from traditional statistical disclosure control methods 

to a formally private method—the TopDown Algorithm—for the 2020 Decennial Census. 

However, this drastic change in how data privacy and confidentiality was defined for the 2020 

DAS caused significant friction between the US Census Bureau and census data users. For instance, 

leaders from states, counties, cities, and towns rely on census data for school planning, budgeting, 

social program provisions, redistricting, revenue sharing, and a multitude of other statutory 

requirements. These data users want more accurate data at granular geographic areas and fear that 

the updated DAS will lead to incorrect public policy decisions. 

This explainer aims to help readers better understand what formal privacy is and how the 

TopDown Algorithm works. The explainer is also a continuation of “Personal Privacy and the Public 

Good: Balancing Data Privacy and Data Utility” (Bowen 2021) and we encourage readers to read that 

report first. 

Introduction to the 2020 Census and Data Privacy 
The decennial census data products affect how the United States apportion the 435 seats for the 

United States House of Representatives, redistrict voting lines, plan for natural disasters, and conduct 

many other purposes. Therefore, the Census Bureau’s mission is “…to count everyone once, only once, 
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and in the right place.” With this goal in mind, the US Census Bureau collects information on every 

person and household at various geographic levels for the United States (figure 1).  

FIGURE 1 
US Census Bureau’s Geographic Levels 

 
Source: Authors’ illustration. 

Because the US Census Bureau collects such detailed information about individuals, the 1929 

Census Act requires the Census Bureau to alter decennial census data with privacy-preserving 

methods.1 Specifically, this act enforces that individuals and businesses cannot be identified in publicly 

released data. Since then, several laws have required the Census Bureau to protect census data 

products. The most cited law is Title 13 of the US Code, which protects individual-level data. A 

discussion on the US Census Bureau’s history of privacy protection and the interpretation of Title 13 

is beyond the scope of this explainer. Interested readers should see work by Hotz and Salvo (2022). 

Note that the Census Bureau uses other important geographic levels not shown in figure 1, such 

as places, minor civil divisions, and American Indian and Alaska Native areas. We do not highlight 

these other areas because the US Census Bureau focuses on the geographic levels shown in figure 1 

when protecting the data. 

In addition to the legal requirements, some people might not be ethically comfortable with data 

users knowing certain characteristics of a group or area, such as where many people of certain racial 

groups live (e.g., Asian Americans, considering the legacy of internment camps during World War II 

and the racial prejudice and discrimination that recently accompanied the COVID-19 pandemic). On 

the other hand, data users, such as Asian American advocacy groups, might want access to such data 
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to provide targeted services like financial support for Asian-owned businesses that struggled during 

the pandemic. This is another example of the tension between data privacy and data utility. 

The Census Bureau refers to the overall methodology to protect a census data product as the 

DAS. The last time US Census Bureau updated the decennial DAS was for the 1990 Census, by 

applying data swapping (figure 2 provides a summary of the 2010 DAS process). The Census Bureau 

periodically updates the DAS because the technological landscape is constantly evolving. For instance, 

modern smart phones have more computational power than the average desktop computer had in 

2010.  

FIGURE 2 
2010 Disclosure Avoidance System Framework 

 
Source: Authors’ illustration. 

To reassess if the US Census Bureau needed to update the DAS, they conducted a database 

reconstruction attack. In other words, this type of attack evaluates whether too many independent 

statistics are published based on confidential data to recreate the underlying confidential data with 

little or no error. The Census Bureau tested this by 

1. recreating the individual level 2010 Census (i.e., age, sex, race, and Hispanic or Non-Hispanic 

ethnicity for every individual in each census block) from nine summary tables, and then 

2. uniquely identifying approximately one in six records using publicly available data, such as 

what could be found on social media profiles (Leclerc 2019). This rate is higher for smaller 

groups, such as underrepresented racial groups in rural areas. 

Figure 3 illustrates a high-level explanation of how the US Census Bureau executed the 

reconstruction attack. For more detailed information about the reconstruction attack, see “The Census 
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Bureau’s Simulated Reconstruction-Abetted Re-identification Attack on the 2010 Census” webinar 

materials.2 

Although the rate of reidentification from the 2010 Census is troubling, a potential data attacker 

could not confirm whether (1) a match was correct or (2) the reconstructed data were correct before 

the match without access to the Census Edited File, the confidential data that have been edited for 

mistakes. Also, the Census Bureau has received criticism for their reconstruction attack. Ruggles and 

Van Riper (2021) claim that the US Census Bureau did not test whether identifying individuals through 

their reconstruction attack is more effective than a random guessing. Consider an analogy of clinical 

trials, where the experiment must have a control group to confirm whether people get better or not 

after a treatment. The authors describe the US Census Bureau’s reconstruction attack as using just a 

treatment group without a control group for comparison. Some people in the treatment group would 

get better regardless of whether they received a treatment, and some people could be identified 

regardless of whether they were included in the reconstruction attack. 

FIGURE 3 
2010 Census Reconstruction Attack  

 

Source: Authors’ illustration. 

Data Privacy Definitions and Terminology 

The debate over the 2010 Census reidentification attack raises the question of what a realistic data 

privacy threat is. If you asked this question to a dozen different people, you would likely receive a 

dozen different responses. This is because data privacy is a broad topic that includes data security, 

encryption, access to data, and more.  
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In the context of the census data products, our explainer focuses on applying data privacy and 

confidentiality methods that provide privacy-preserving access to sensitive data. Although this area of 

data privacy is very important, especially within the federal statistical system, a smaller share of people 

know about it. Therefore, we need to cover the many definitions and terminologies that are widely 

used in the data privacy and confidentiality field before discussing how the Census Bureau 

implemented the 2020 DAS. We outline several definitions and terminology to keep discussions 

consistent and avoid confusion, because the data privacy and confidentiality field often has conflicting 

terms, or several terms are used to represent the same concept. We will also refer to “data privacy and 

confidentiality” as “data privacy” to be concise, but as stated, outside of this context, the phrase “data 

privacy” has many meanings. 

DATA PRIVACY AND CONFIDENTIALITY TERMS 

Although data privacy and data confidentiality are certainly related, they are different, and both play a 

role in limiting statistical disclosure risk. 

Data privacy: the ability “…to determine what information about ourselves we will share with 
others” (Fellegi 1972). 

Data confidentiality: “the agreement, explicit or implicit, between data subject and data 
collector regarding the extent to which access by others to personal information is allowed” 
(Fienberg and Jin 2018). 

Statistical disclosure control or limitation: statistical approaches to ensure data confidentiality 
as a means of maintaining privacy. 

As we learned in Bowen (2021), there is a necessary balance between data privacy and data utility (or 

usefulness). This tension is often referred to in the data privacy literature as the “privacy-utility trade-

off.” 

Data utility, quality, accuracy, or usefulness: how practically useful or accurate to the data are 
for research and analysis purposes. 

Original data: the uncleaned, unprotected version of the data, such as the raw census 
microdata, which are never publicly released. 

Confidential data: the cleaned version (meaning edited for inaccuracies or inconsistencies) of 
the data; often referred to as the gold standard or actual data for analysis. For example, the 
Census Edited File that is the final confidential data for the 2020 Census. This dataset is never 
publicly released but may be made available to others who are sworn to protect confidentiality 
and who are provided access in a secure environment, such as a Federal Statistical Research 
Data Center. 

Public data: the publicly released version of the confidential data, such as the US Census 
Bureau’s public tables and datasets. 
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DATA PRIVACY AND CONFIDENTIALITY COMMUNITY 

The data privacy community or ecosystem encompasses a wide range of stakeholders: 

Data users: individuals who consume the data, such as analysts, researchers, planners, and 
decisionmakers. 

Data privacy experts or researchers: individuals who specialize in developing data privacy and 
confidentiality methods. 

Data curators, maintainers, or stewards: individuals who own the data and are responsible for 
its safekeeping. 

Data intruders, attackers, or adversaries: individuals who try to gather sensitive information 
from the confidential data. 

Data Privacy Methodology Workflow 

Given the importance of the 2020 Census and other data products, how does the US Census Bureau 

and other data curators provide data users information from these confidential data? Generally, data 

users obtain the information in two ways: 

1. Direct access to the confidential data if they are trusted users (e.g., obtaining Special Sworn 

Status to use the Federal Statistical Research Data Centers). 

2. Access to public data or statistics, such as public microdata and summary tables, that are 

produced by data curators and modified to protect confidentiality. 

The latter is how most data users gain access to information from confidential data and is the 

focus of this explainer. To create public data or statistics, data curators rely on statistical disclosure 

control (SDC) methods to preserve data confidentiality. The process of releasing this information 

publicly often involves the steps shown in figure 4. 

We see that step 1 requires the data curator to determine the acceptable thresholds of disclosure 

risk and utility. For the disclosure risks, the thresholds are frequently determined by law, such as Title 

13 of the US Code3 to “provide strong protection for the information [that the Census] collect[s] from 

individuals and businesses.” In this example, the Data Stewardship Executive Policy Committee 

“… serves as the focal point for decision-making and communication on policy issues related to 

privacy, security, confidentiality and administrative records”4 for the Census Bureau, including the 

interpretation of Title 13. Similar groups exist within various other federal agencies that make these 

decisions. 
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For the data utility, data curators often (and should) consult data users and establish data quality 

metrics based on how the data users will analyze the data. The 2020 Census data, for example, are 

used to determine boundaries of legislative districts. Thus, the Census Bureau produced and published 

several relevant metrics to ensure data quality. 

FIGURE 4 
Data Privacy Workflow 

Source: Authors’ illustration. 
Note: PII = personally identifiable information. 

In step 2, the data curator must remove any personally identifiable information that is unnecessary 

for the public data or statistics release, such as names or Social Security numbers. In step 3, the data 

curator must then identify what features of the data should be altered with SDC methods. Sometimes 

the data curator must decide which features of the data are high, medium, and low priority for 

preserving the information. This helps the data curator and the privacy researcher determine to what 

extent certain parts of the data should be altered to help balance the privacy-utility trade-off. 

Steps 4 and 5 are the hardest parts of the workflow. We can imagine in the extreme case, if data 

users want full data utility, then the data curator would release the confidential data unaltered. On the 

other hand, to achieve only privacy, the data curator would never release the confidential data. In this 

example, we see how data privacy and data utility naturally oppose one another. This is why steps 4 
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and 5 become an iterative process in developing an SDC method, and making one part of the data 

more useful reduces the data privacy guarantee (and vice versa).  

For step 4, the privacy researcher must carefully determine how much to alter, change, or sanitize 

the confidential information using a particular SDC method. Within the data privacy field, the 

terminology defining each step of the SDC process can be inconsistent.  

We break down SDC methods into three steps (but note that some SDC methods do not have the 

last step). 

1. Preprocessing: prioritizing which statistics or information to preserve (i.e., could be considered 

step 3 in the workflow). 

2. Privacy: applying a sanitizer to the desired statistic or information (i.e., altering the statistic). 

3. Postprocessing: ensuring the results of the statistic or information are consistent with realistic 

constraints (e.g., population counts should not be negative). 

Note that in the privacy step, sanitizer is used with a lowercase “s”; some SDC methods use 

capitalized “Sanitizer” as part of their formal name. 

The privacy step requires the privacy expert to know the type of disclosure risk to protect the 

confidential data against. Traditionally, there are generally three types of disclosure risk: 

1. Identity disclosure risk occurs if the data intruder associates a known individual with a public 

data record (e.g., a record linkage attack or when a data adversary combines one or more 

external data sources to identify individuals in the public data). 

2. Attribute disclosure risk occurs if the data intruder determines new characteristics (or 

attributes) of an individual based on the information available through public data or statistics 

(e.g., if a dataset shows that all people age 50 or older in a city are on Medicaid, then the data 

adversary knows that any person in that city above age 50 is on Medicaid). 

3. Inferential disclosure risk occurs if the data intruder predicts the value of some characteristic 

from an individual more accurately with the public data or statistic than would otherwise have 

been possible (e.g., if a public homeownership dataset reports a high correlation between the 

purchase price of a home and family income, a data adversary could infer another person’s 

income based on purchase price listed on Redfin or Zillow). 
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Note that some federal statistical agencies are not concerned about inferential disclosure risk for 

two reasons. First, one of the main reasons for releasing public data is to allow data users to infer and 

identify relationships among various attributes. If an agency considered inferential disclosure risk, then 

few datasets and statistics would be released. Second, inferential disclosure risk is predicting 

aggregated attributes instead of individual, which means the data intruder would poorly predict 

individual values. However, some other federal statistical agencies assess inferential disclosure risk 

when there are high statistical relationships between certain attributes and an adversary can create an 

extremely accurate model (Federal Committee on Statistical Methodology 2005). 

After developing an SDC method that protects against certain types of disclosure risks, the data 

curator and privacy research must assess data utility. Broadly, there are two ways to measure it: 

1. General utility or global utility: measures the univariate and multivariate distributional 

similarity between the confidential data and the public data (e.g., sample means, sample 

variances, and the variance-covariance matrix). 

2. Specific utility or outcome-specific utility: measures the similarity of results for a specific 

analysis (or analyses) of the confidential and public data (e.g., comparing the coefficients in 

regression models). 

Some in the data privacy community argue that data utility does not necessarily mean accuracy 

and are actively exploring other measures that best convey data quality, consistency, and accuracy.  

Once the data curator and privacy expert find the right balance between privacy and utility, they 

may proceed to publishing the data or statistics in step 6. However, the data curators and privacy 

researchers should consult the data user community to determine what kind of published data and/or 

statistics to release and ensure that information are fit for use, which is why achieving the balance is 

so difficult. Here, we list examples of possible data products that a data curator could release after 

applying SDC methods, roughly from most to least detailed: 

 microdata (e.g., public use microdata series or PUMS) 

 summary tables (e.g., American Community Survey tables) 

 summary statistics (e.g., multiple statistics on income in a state) 

 single statistics (e.g., maximum age in a county) 

Curators could release one of these products after applying an SDC method, or they could release 

them “on demand” to answer different questions using the data. Questions asked of the data are 
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referred to in computer science terminology as queries, which are statistics. We will therefore refer to 

them as statistics throughout the explainer to avoid confusion. Note that when reading more technical 

data privacy papers, these questions are more commonly referred to as queries. 

Introduction to Formal Privacy 
We now better understand the challenges the US Census Bureau faces when creating the DAS to 

protect against a privacy threat. In particular, the Census Bureau, as the data curator, must make 

assumptions or judgement calls on how a data intruder would obtain sensitive information from public 

data or statistics. They must ask themselves the following questions: How much disclosure risk is too 

much, and what type? When evaluating disclosure risk, what assumptions can be made about how the 

data intruder will approach the data? What about the resources the intruder has access to? Do these 

assumptions hold in the context of the specific, real-world application? 

These questions and many others motivated the creation of a concept known as formal privacy, 

which provides a mathematical bound on the disclosure risk for any statistic applied to the confidential 

data. Although methods developed within the formal privacy framework are considered SDC methods, 

data privacy researchers often separate formal privacy from other SDC methods. We will refer to the 

SDC methods and disclosure risk measures not developed under formal privacy as traditional SDC 

methods and traditional disclosure risk definitions.  

In this part of the explainer, we will cover a high-level overview of formal privacy, differential 

privacy, and differentially private mechanisms. This summary will involve some mathematical intuition 

and present some mathematical equations to prepare the reader for the next section on how the 2020 

DAS works. For readers interested in a more technical review of similar content, see work by Bowen 

and Garfinkel (2021). 

Formal Privacy 

We begin with what makes a privacy definition formally private. Although the privacy community has 

not fully agreed on a common definition, formal privacy is defined by the Census Bureau5 as a subset 

of SDC methods that give “formal and quantifiable guarantees on inference disclosure risk and known 

algorithmic mechanisms for releasing data that satisfy these guarantees.” 

Traits of formally private mechanisms include the following: 
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 Ability to quantify and adjust the privacy-utility trade-off, typically through parameters. 

 Ability to rigorously and mathematically prove the maximum privacy-loss that can result from 

the release of information (Bowen and Garfinkel 2021). 

 Formal privacy definitions also allow one to “compose” multiple statistics. In other words, a 

data curator can compute the total privacy-loss from multiple individual information releases 

(Bowen and Garfinkel 2021). 

Simply put, the main difference between traditional SDC methods and formally private methods is 

the ability to account for each piece of information being “leaked” from the confidential data. We can 

think of traditional SDC methods as akin to a someone charging a limitless credit card; formally private 

methods are akin to someone charging to a debit card with a set budget. In both scenarios, there is a 

running bill, but only one requires constantly checking the balance. We can easily imagine that not 

tracking that bill is the equivalent of releasing too many statistics with enough accuracy, which could 

compromise the confidential data (Bowen and Garfinkel 2021). Although in both traditional and formal 

privacy settings data curators must limit the type and number of questions asked of the data, they are 

faced with “tracking the bill” under a formal privacy framework. 

Differential Privacy and Other Formally Private Definitions 

We now understand the key differences between formally private definitions and traditional 

disclosure risk definitions. But what are some formally private definitions? The most well-known 

formal privacy definition is differential privacy (DP), first introduced by Dwork and colleagues (2006). 

We emphasize that DP is a strict mathematical definition that a method must satisfy (or meet the 

mathematical conditions) to be considered differentially private, not a statement or description of the 

data itself.  

Simply put, DP does not make assumptions about how a data intruder will attack the data and the 

amount of external information or computing power an actor has access to, now or in the future.6 

Instead, DP assumes the worst-case scenario to provide a strong privacy guarantee: 

 The data intruder has information on every observation except one 

 The intruder has unlimited computational power 

 The missing observation is the most extreme possible observation (or an extreme outlier) that 

could alter the statistic 
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Mathematically, DP states that the log of the ratio of the probability that any individual 

observation was or was not in the data that generated the output is bounded by the value of 𝜖𝜖, where 

𝜖𝜖 > 0. This means that if we use a privacy-loss budget of 1, then that ratio converts to 𝑒𝑒1 ≈ 2.72 and 

represents the bound on the probability that the above assumptions fail because we are releasing 

information. Informally, DP guarantees the output of a differentially private mechanism will be roughly 

the same whether the individual observation is in the data or not (figure 5).  

FIGURE 5 
Visual Representation of Differential Privacy 

 
Source: Authors’ illustration. 

Privacy researchers have also developed other formally private definitions and consider these 

alternative definitions as relaxations of the DP definition because they “ease up” on the strong privacy 

guarantee that DP provides (i.e., the worst-case scenario listed earlier). We briefly cover the two most 

popular ones at a high level with some math to explain the relationships among the three formal 

privacy definitions. Note that privacy experts often refer to the original definition of DP as pure-DP or 

𝜖𝜖-DP given the many DP relaxations. 

A popular DP relaxation is approximate-DP or (𝜖𝜖, 𝛿𝛿)-DP, which has similar levels of privacy 

guarantee as 𝜖𝜖-DP, but with a small probability (i.e., 𝛿𝛿 ∈ [0,1]) that the DP ratio does not hold (Dwork 

et al. 2006; Dwork and Roth 2014). In other words, if 𝛿𝛿 = 10−3, then there will be a 0.001 percent 

chance that a (𝜖𝜖, 𝛿𝛿)-DP method will release the confidential value.  
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Dwork and Rothblum (2016) created concentrated DP with the purpose of reducing the privacy 

loss over multiple computations. Bun and Steinke (2016) later improved the definition and called it 

zero-concentrated-DP or 𝜌𝜌-zCDP. The authors also proved that if a method satisfies 𝜌𝜌-zCDP, then it 

satisfies (𝜖𝜖, 𝛿𝛿)-DP, where 𝜖𝜖 = 𝜌𝜌 + 2�𝜌𝜌 log(1/𝛿𝛿)  for any 𝛿𝛿 > 0.  

There is also a direct relationship between 𝜌𝜌-zCDP and 𝜖𝜖-DP, where if a method satisfies 𝜖𝜖-DP, 

then the method satisfies 𝜌𝜌-zCDP, where 𝜌𝜌 = 1/2 𝜖𝜖2. These conversions will be particularly relevant 

for the section on the 2020 Decennial Census. The US Census Bureau initially announced they would 

be using pure-DP but changed to approximate-DP and zero-concentrated-DP to reduce the amount of 

noise to the 2020 Census data products. Unfortunately, this shift in formally private definitions 

created confusion among the census data user community. We discuss this communication issue 

further in our takeaways section. 

Privacy-Loss Budget 

In contrast to the traditional disclosure risk types, how does DP and the other DP relaxations compute 

or account for the privacy-loss or disclosure risk when releasing information? These definitions use 

the concept of a privacy-loss budget, typically represented mathematically as 𝜖𝜖. Although there are 

two other privacy parameters (𝛿𝛿 and 𝜌𝜌), we will focus on 𝜖𝜖 for simplicity and ease of conceptual 

explanations until the next section on the 2020 Decennial Census. The privacy-loss budget bounds 

the disclosure risk associated with releasing data or statistics. It can be thought of as a knob that 

adjusts the trade-off between data privacy and utility. Some things to keep in mind about the privacy-

loss budget are as follows: 

 The data curator must decide the privacy-loss budget (i.e., the total amount of 𝜖𝜖) before the 

release of any data or statistic. Like a real budget, when privacy-loss budget is exhausted, no 

more information from the confidential data is released. 

 A larger value of 𝜖𝜖 increases the maximum disclosure risk (i.e., the upper bound of the 

disclosure risk) associated with a given release of information. Simply put, 

» larger 𝜖𝜖 = less noise potentially added to a statistic = more accuracy, but less privacy, and 

» smaller 𝜖𝜖 = more noise potentially added to a statistic = less accuracy, but more privacy. 

For a visual representation, figure 6 shows the image becoming clearer or more accurate as 𝜖𝜖 

increases.  
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FIGURE 6 
Illustration of Increased 𝝐𝝐 Results in a Clearer Image 

Source: Authors’ illustration. Original image is Flowers in a Vase by Philip van Kouwenbergh and is in the public domain. 

Earlier in the explainer, we stated that the trade-off between data privacy and utility could be 

explained in the extreme case of releasing the confidential data (i.e., maximum utility) or not releasing 

the confidential data (i.e., maximum privacy). In the DP framework, we can explain the scenario with 𝜖𝜖. 

When 𝜖𝜖 → ∞, we obtain perfect utility, but no privacy. When 𝜖𝜖 → 0, we obtain perfect privacy, but no 

utility. In other words, as with traditional SDC methods, the privacy-loss budget cannot eliminate all 

risk. When the data curator adjusts the privacy-loss budget, they are adjusting the strength of the 

privacy guarantee provided by DP. 

Additionally, the data curator must also determine how to distribute the privacy-loss budget over 

the many possible public datasets and statistics. For instance, we can imagine the privacy-loss budget 

as a set monthly budget for household expenses (e.g., housing, groceries, utilities, and transportation). 

Some people might want to equally allocate their funds to each expense, whereas others might think 

that groceries should cost more than transportation, but not more than housing. Likewise, some data 

curators might prioritize releasing multiple statistics, while others might allocate the full privacy 

budget to allow the release of microdata. In other words, data curators must consider how they will 

allocate the privacy-loss budget for each individual release of information while maintaining the 

overall budget for the system.  

Given that data curators could distribute their overall privacy-loss budget across several public 

datasets or statistics in many ways, some would want guidance on allocating the privacy-loss budget. 

Although Dwork and colleagues (2006) proposed DP over 16 years ago, setting an appropriate 

privacy-loss budget is still an open question. All members of the data privacy community should be 

involved in this discussion, but many advise that the choice is ultimately up to public policymakers. 
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However, although policymakers are the most equipped to understand the consequences of the 

privacy-loss, they are likely the least equipped to understand what 𝜖𝜖 means. 

For instance, public policymakers would probably not know that DP defines 𝜖𝜖 as logarithmic (e.g., 

𝜖𝜖 =1, 2, and 3 becomes approximately 2.7, 7.34, and 20.01, respectively) and an inequality (i.e., 𝜖𝜖 

represents the upper bound for disclosure risk, which means the actual disclosure risk could be lower). 

What do privacy experts suggest? Early privacy research considered 𝜖𝜖 being 1 or 2 as the 

maximum privacy-loss budget for releasing public data or statistics. However, much larger values are 

appearing in more recent applications. For example, the US Census Bureau applied their new 

differentially private method, called the TopDown Algorithm, to the 1940 and 2010 Census and 

published the resulting data as a demonstration. Data users could then compare the demonstration 

data against the unaltered 1940 Census data7 and the original 2010 Census data release. Table 1 

shows the values that the Census Bureau used for the demonstration data throughout multiple 

releases. 

TABLE 1 
Demonstration File 𝝐𝝐 and Ratio Values 
The 𝜖𝜖 values that the US Census Bureau used for the demonstration persons file 

𝝐𝝐 Ratio 
0.25 1.28 
0.50 1.65 
0.75 2.12 
1.00 2.72 
2.00 7.39 
4.00 54.60 
4.50 90.02 
6.00 403.43 
8.00 2,981.96 

10.30 29,733.62 

Source: Authors.  

In June 2021, the Census Bureau8 committed to 𝜖𝜖 of 17.14 for the persons file and 2.47 for the 

housing file, which are part of the redistricting data. Although the difference between the two 

numbers is 14.67, the privacy-loss budget for the persons file converts to 27,784,809 (i.e., 𝑒𝑒17.14), 

whereas the housing file privacy-loss budget becomes 11.82 (i.e., 𝑒𝑒2.47). In other words, the persons 

file has a privacy-loss budget that is roughly 2.35 million times larger than the housing file.  
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What about other real-world applications? Rogers and colleagues (2020) compared several 

industry applications of DP. One of the largest values of 𝜖𝜖 is 769 (a monthly budget), which converts 

to a value rapidly approaching infinity. In recent years, there have been more differentially private 

applications that provide further context on setting an appropriate privacy-loss budget. 

At this point, you’re likely still confused about what all these privacy budget values mean for 

public policy decisions. The simple answer is the community still doesn’t know, other than that higher 

privacy-loss budget values mean more information is leaked from the confidential data. We need more 

applications and conversations with data users and privacy researchers to best inform policymaking 

decisions on the best balance between data privacy and utility. We discuss this further at the end of 

this report. 

Global Sensitivity 

In addition to the privacy-loss budget, most differentially private methods rely on the concept called 

global sensitivity, which describes how resistant the differentially private sanitizer is to the presence 

of outliers (Bowen and Garfinkel 2021). We can think of the global sensitivity as another value that 

helps determine how much noise is needed to protect the released data or statistic, because some 

information is more sensitive than other information to outliers. 

TABLE 2 
Demonstration File 𝝐𝝐 and Ratio Values 
A fictitious socioeconomic dataset with participants’ names, age, and wealth, along with Elon Musk’s 
information  

Person Age Wealth 
Alex 28 $51,489 

Andrea 26 $36,072 

Bob 62 $85,356 

Beth Ann 58 $77,226 

Daniel 17 $623 

Donna 34 $41,543 

Edward 45 $115,879 

Elizabeth 53 $99,253 

Elon 51 $263.6 billion 

Nikola 86 $0 

Source: Authors’ hypothetical and “The Real-Time Billionaires List,” Forbes, accessed July 15, 2022, 
https://www.forbes.com/real-time-billionaires/#2cfd93953d78. 

https://www.forbes.com/real-time-billionaires/#2cfd93953d78
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We borrow the example explained in Bowen (2021) to help explain this concept along with table 5 

to provide example values. Imagine the data we want to protect contains socioeconomic information 

and the statistic we want answered is, “What is the median wealth of a group of individuals?” Under 

DP, we must consider the change of the most extreme possible record that could exist in any given 

data that has demographic and financial information. For our example, that person is Elon Musk, who 

was the wealthiest person in the world as of the publication of this explainer (table 2). If Musk is 

present or absent in the data, the median wealth should not change too much. For instance, from the 

values in table 2, the median wealth is $64,357.50 with Musk in the data. The median wealth becomes 

$51,489 without Musk. This means we can provide a more accurate answer by applying less 

alterations to the median income statistic, because it is less sensitive to (or more robust against) the 

extreme outlier, Musk. Now consider the question, “What is the average wealth of a group of 

individuals?” Unlike the previous statistic, the answer would significantly change if Musk were present 

or absent from the data. From our values in table 2, the average wealth would be $26,360,050,744 

with Musk and $56,382.33 without Musk. To protect the extreme case, a differentially private method 

would need to provide a significantly less accurate answer by altering the statistic more. 

Gaussian Mechanism 

So what is an example of a differentially private sanitizer (or a differentially private method that alters 

a statistic) that uses the privacy-loss budget and global sensitivity? We will walk through how to apply 

a popular differentially private sanitizer, called the Gaussian mechanism. This sanitizer adds noise to a 

statistic by drawing values from a Gaussian distribution (i.e., a normal or bell-curve distribution). This 

distribution is centered at zero and its variability (i.e., how wide or narrow the distribution is) changes 

based on the privacy-loss parameters, 𝜖𝜖 and 𝛿𝛿, and the global sensitivity of the target statistics. Having 

the distribution centered at zero means there is a higher probability of adding very little or no noise to 

the confidential data statistics, which is ideal for data utility. 

How do the privacy parameters and the global sensitivity of a statistic affect the noise variability? 

Suppose the statistic we want to release is a count, which has a global sensitivity of 1. If we want to 

have a higher probability of adding very little noise to our count statistic (more accuracy), then we 

want to increase the privacy parameter values (𝜖𝜖 and/or 𝛿𝛿). If we want to add more noise to our count 

statistic (more privacy), then we want to decrease the privacy parameter values. In figure 7, we show 

how the variability of the Gaussian distribution increases (i.e., the curve flattens out more) when we 

decrease 𝜖𝜖. This translates to having a higher probability of adding more noise to our count statistic. In 
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our figure, we don’t change 𝛿𝛿, but changing 𝛿𝛿 will also affect the variability of the Gaussian 

distribution similarly. 

FIGURE 7 
Gaussian Distribution with Different Values of 𝝐𝝐 with Global Sensitivity = 𝟏𝟏 and 𝜹𝜹 = 𝟏𝟏𝟎𝟎−𝟕𝟕 

 

Source: Authors’ illustration. 

Suppose now we have three different statistics that have global sensitivities of 1, 2, and 3, 

respectively. We also want to equally allocate the same amount of privacy-loss budget to each 

statistic (e.g., 𝜖𝜖 = 1 and 𝛿𝛿 = 10-7). When a statistic has a higher global sensitivity (i.e., less robust to 

outliers), we will need to add more noise to protect that statistic for the same privacy-loss budget. 

Figure 8 illustrates how the variability of the Gaussian distribution increases when the global 

sensitivity of a statistic is large for a set privacy-loss budget.  

FIGURE 8 
Gaussian Distribution with Different Values of Global Sensitivity with 𝝐𝝐 = 𝟏𝟏 and 𝜹𝜹 = 𝟏𝟏𝟎𝟎−𝟕𝟕  

 

Source: Authors’ illustration. 
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Note that for the 2020 Decennial Census, the Census Bureau used a similar sanitizer called the 

discrete Gaussian distribution, which adds discrete values to a statistic instead of continuous values to 

ensure the noise added to count statistics resulted in integer values. 

Models of Differential Privacy 

Now that we understand how a formally private sanitizer works, how do privacy researchers 

implement them in practice? Over the years, roughly two models or frameworks for applying formally 

or differentially private sanitizers and methods have arisen. Bowen and Garfinkel (2021) present two 

models (trusted curator and local), but we will discuss differentially private synthetic microdata as a 

third model here because it encompasses a large part of the literature. 

FIGURE 9 
Trusted Curator Model Illustration 

 

Source: Authors’ illustration. 

TRUSTED CURATOR MODEL 

In the trusted curator model, a centralized data curator receives confidential data, creates the data 

products, applies the differentially private method, and releases the results. This means that if the data 

curator has a set privacy-loss budget, then the curator must stop releasing information when the 

budget is reached. For example, Uber created a differentially private system that allowed their 

analysts within the company to evaluate customer experience through targeted requests without 

seeing confidential individual trip or rider details (Johnson, Near, and Song 2018). In this situation, one 

part of Uber is the data curator, and the other is the data user. Figure 9 shows how the trusted curator 

model works for generating differentially private microdata and statistics. 
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DIFFERENTIALLY PRIVATE SYNTHETIC MICRODATA 

Differentially private synthetic microdata is DP applied to a statistical model of the confidential data 

(shown in the top part of figure 9). The privacy-protected model is then used to create individual 

records for release, like synthetic data generation. Although this model is considered a type of the 

trusted curator model, it is one of the most common applications of DP. The differentially private 

synthetic microdata is popular because once the microdata is generated it can be distributed or 

repeatedly analyzed without adding to overall privacy loss. However, creating accurate differentially 

private synthetic microdata is very difficult, particularly for data with more than a few columns.  

FIGURE 10 
Local Differential Privacy Model Illustration 

 

Source: Authors’ illustration. 

LOCAL DIFFERENTIAL PRIVACY 

Local DP allows the participant to add DP locally to their own data before sending that information to 

the curator (figure 10). Essentially, the local model sanitizes the data upon collection. This framework 

trusts no one, not even the data curator. The general idea is that rather than a global or overall 

privacy-loss budget being applied to the entire confidential data, each data participant or data 

collection point receives its own privacy budget. However, this model substantially adds more noise to 

locally noised microdata than to data products created by a trusted curator (Bowen and Garfinkel 

2021).  
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Introduction to 2020 Disclosure Avoidance System 
Although the formal privacy framework avoids the ad hoc nature of traditional SDC methods, we 

learned some of the difficulties in implementing formally private methods. For instance, a data curator 

must answer new questions: Which formally private definition should be used? What is an appropriate 

value for the privacy-loss budget? What are the utility measures to ensure data quality and usability? 

Once a model of formal privacy is identified, how is a formally private method created? And what 

communication materials are needed to explain the formally private method to data users, such as 

public policymakers? 

In this section, we walk through how the US Census Bureau tackles these questions when 

developing the 2020 DAS. 

Privacy and Utility Measures 

After the 2010 reconstruction attack, the US Census Bureau started to explore various formally 

private definitions. The Census Bureau began with pure-DP and eventually settled on zero-

concentrated differential privacy (𝜌𝜌-zCDP, a DP relaxation), which can be converted to (𝜖𝜖, 𝛿𝛿)-DP. The 

US Census Bureau changed to 𝜌𝜌-zCDP because of how multiple Gaussian distributions compose. At a 

high level, the Census Bureau can reduce the overall amount of noise added to the data because 

multiple Gaussian distributions create a Gaussian distribution. Also, adding noise from a Gaussian 

distribution does not satisfy pure-DP. 

In terms of communication, the US Census Bureau continued to report the privacy parameter 

values as 𝜖𝜖 and 𝛿𝛿. The Census Bureau likely made this decision to avoid confusion after first using 

pure-DP for many of the demonstration data (Abowd and colleagues 2022; US Census Bureau 2021).  

When selecting the privacy-loss budget, the US Census Bureau tested out several values (table 1) 

against various utility metrics. However, there are thousands of data use applications, ranging from 

allocating congressional seats to determining the number of restaurant permits to issue. The Census 

Bureau therefore implemented several utility metrics, such as, the following: 

 General utility  

» mean absolute error 

» mean numeric error 

» root mean squared error 
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» mean absolute percent error 

» coefficient of variation 

» total absolute error of shares 

 Outcome specific  

» decisions on redistricting voting lines or school districts 

» total absolute error of shares metric by county within each state as a share of that state, 

by incorporated place as a share of that state, and by minor civil divisions as a share of 

that state 

A full list of the metrics can be found in the “Revised Data Metrics for 2020 Disclosure 

Avoidance” document.9  

The US Census Bureau used these metrics and more when determining the privacy-loss budget. 

During testing, they decided to split the redistricting file into two parts, a persons file and a housing 

units file. For the persons file, the Census Bureau used 𝛿𝛿 = 10−10 and 𝜌𝜌 = 2.56. These values convert 

to 𝜖𝜖 = 17.14 (i.e., 𝜌𝜌 + 2�𝜌𝜌 log(1/𝛿𝛿) = 𝜖𝜖). For the housing units file, the US Census Bureau used 𝛿𝛿 =

10−10 and 𝜌𝜌 = 0.07, which converts to 𝜖𝜖 = 2.47. We will cover how 𝜌𝜌 is allocated to each target 

statistic in the next subsection. 

Statistical Disclosure Control Method 

Similar to traditional SDC methods, we can break down formally private methods into the 

preprocessing, privacy, and postprocessing steps. Here, we will focus on the persons file of the 2020 

DAS, but general steps apply to the housing units file as well. For more technical details of the 2020 

DAS, see work by Abowd and colleagues (2022).  

PREPROCESSING STEP 

The Census Bureau first had to calculate the crosstabulation (or marginal counts) of all variables for 

each geographic level (from state to census blocks) from the confidential data or Census Edited File. 

The US Census Bureau (2021) lists the statistics of interest as follows:  

 1 total count 

 63 race, 2 ethnicity (Hispanic or Latino/Not Hispanic or Latino), 2 voting age (under 18 

years/18 years and older) 
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 3 institutional versus noninstitutional group quarter types 

 1 residential and 7 possible group quarter types for a total of 8 (e.g., dorms and prisons) 

 126 possible combinations of race and ethnicity 

 126 possible combinations of race and voting age 

 4 possible combinations of ethnicity and voting age 

 252 possible combinations of race, ethnicity, and voting age 

 2,016 possible combinations of race, ethnicity, and voting age at each residential and group 

quarter type 

For example, one of the possible statistics is the number of Asian Americans alone who are under 

18 in a residential housing unit at the census tract level. 

PRIVACY STEP 

Essentially, the US Census Bureau applies the Gaussian mechanism to all the possible combinations 

listed earlier unless that combination has no observations (i.e., treat as a structural zero) at each 

geographic level. However, the confusing part is how the Census Bureau allocates the privacy-loss 

budget for the different statistics at each geographic level. 

TABLE 2 
Privacy-Loss Budget: People 
The 𝜌𝜌 allocation that the US Census Bureau used for the person file of the 2020 Census 

Geographic level Rho allocation 
United States 104/4,099 ≈ 0.025 
State 1,440/4,099 ≈ 0.351 
County 447/4,099 ≈ 0.109 
Tract 687/4,099 ≈ 0.168 
Optimized block group 1,256/4,099 ≈ 0.306 
Block 165/4,099 ≈ 0.040 

Source: US Census Bureau (2021). 

We recreate the tables from the US Census Bureau (2021) to help explain how the US Census 

Bureau allocated the privacy-loss budget (𝜌𝜌 in this case). First, the Census Bureau allocated a 

proportion of the total or global 𝜌𝜌 to geographic levels. Table 2 lists the 𝜌𝜌 allocations, which sum to 

4,099/4,099.   
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Mathematically, this becomes 

𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜌𝜌𝑈𝑈𝑈𝑈 + 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

=
104

4,099
× 2.56 +

1,440
4,099

× 2.56 +
447

4,099
× 2.56 +

687
4,099

× 2.56 +
1,256
4,099

× 2.56 +
165

4,099
× 2.56 = 2.56 

After allocating 𝜌𝜌 to each geographic level, US Census Bureau divided that geographic level’s 

privacy-loss budget further for each of the race, ethnicity, and voting age statistics. For the sake of 

simplicity, we focus on the “Block” column in the “Per Query Privacy-Loss Budget: People” in US 

Census Bureau (2021) and recreate this information in this report in table 3. From table 2, we know 

that 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 165/4,099 × 2.56 ≈ 0.10. This means 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≈ 0.10 is allocated proportionally to the 11 

statistics in table 3. 

What does that mean for a specific statistic? Suppose we wanted to sanitize the block total 

population. Table 3 lists that 5/4,097 of the 0.10 privacy-loss budget is allocated to that statistic, 

which comes out to roughly 0.0001. Because the Census Bureau used a discrete Gaussian distribution, 

the spread parameter (this is not the variance) is 𝜎𝜎2 = 1/𝜌𝜌 = 9939. This means if we made 100 draws 

from this distribution, then about 90 of them will be between -164 and 164. In other words, 90 

percent of the time, the potential noise added to the block population statistic will be between -164 

and 164.  

TABLE 3 
Per Query Privacy-Loss Budget: People 
The 𝜌𝜌 allocation that the US Census Bureau used for the personal file of the 2020 Census 

Query Rho allocation 
TOTAL 5/4,097 ≈ 0.001 
CENRACE 9/4,097 ≈ 0.002 
HISPANIC 5/4,097 ≈ 0.001 
VOTINGAGE 5/4,097 ≈ 0.001 
HHINSTLEVELS10 5/4,097 ≈ 0.001 
HHGQ 5/4,097 ≈ 0.001 
HISPANIC × CENRACE 21/4,097 ≈ 0.005 
VOTINGAGE × CENRACE 21/4,097 ≈ 0.005 
VOTINGAGE × HISPANIC 5/4,097 ≈ 0.001 
VOTINGAGE × HISPANIC × CENRACE 71/4,097 ≈ 0.017 
HHGQ × VOTINGAGE × HISPANIC × CENRACE 3,945/4,097 ≈ 0.963 

Source: US Census Bureau (2021). 
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However, note that this potential noise is for changing one statistic and the redistricting file has 

thousands of statistics. Further, the 2020 DAS truncates or reduces the potential noise from all these 

statistics further using mathematical properties when composing multiple Gaussian distributions. 

Simply put, the -164 and 164 range is reduced to a much smaller one. How much has yet to be 

reported. For more technical details, see work by Abowd and colleagues (2022). 

POSTPROCESSING STEP  

After adding noise to each statistic, the TopDown Algorithm is the procedure that enforces the 

invariant statistics (i.e., no change to the statistics) and constraints (e.g., the population counts in all 

counties in the state should equal the state population) listed below. Note that many refer to the 2020 

DAS as the TopDown Algorithm even though the TopDown Algorithm only encompasses the 

postprocessing step. 

 Invariant statistics: 

» Total population in each state, the District of Columbia, and Puerto Rico 

» Total number of housing units within each census block 

» Number of group quarter facilities by type within each census block 

 Constraints: 

» Counts must be integers 

» Sums of rows and column margins must sum to the total populations 

» Counts must be consistent within tables, across tables, and across geographies 

» If there are zero housing units and zero group quarters at a geographic level, then no 

people may be assigned to that geography 

» Number of people in a group quarter is equal to or greater than 1 

» Number of people in a housing unit or group quarter is less than or equal to 99,999 

» Geographic areas cannot have everyone under the age of 18 except areas with certain 

group quarter populations (e.g., juvenile detention centers) 

» Census Edited File constraints (such as, if person two is the “natural child” of person one, 

then person two cannot be older than person one). 

Technical details on how the TopDown Algorithm optimizes these invariants and constraints can 

be found in work by Abowd and colleagues (2022). Also, note that the full list of edit specifications for 

each Census Edited File is not public record. 
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Takeaways and Ongoing Challenges 
In this explainer, we recapped the basics of data privacy, learned about formal privacy, and understood 

how the US Census Bureau implemented the TopDown Algorithm for the 2020 Census. We learned 

the following: 

 Unlike traditional SDC methods, formally private methods quantify and bound the disclosure 

risk associated with releasing information from the confidential data. 

 Formal privacy definitions use the idea of a privacy-loss budget that adjust the amount of 

maximum disclosure risk (the upper bound of the disclosure risk) associated with releasing 

information from the confidential data. 

» larger 𝜖𝜖 = less noise potentially added to a statistic = more accuracy, but less privacy 

» smaller 𝜖𝜖 = more noise potentially added to a statistic = less accuracy, but more privacy 

 How public policymakers set the privacy-loss budget is still an open question. 

 Census data users must now answer the question, “How good is good enough?” and provide 

new utility measures and use cases to the US Census Bureau. 

The final two takeaways leave us with three major challenges. First, we do not have clear 

interpretations of the worst-case privacy-loss for the privacy parameters 𝜀𝜀,  𝛿𝛿, or 𝜌𝜌. As shown in table 

1, when 𝜀𝜀 is one or two, the ratio of probabilities is around 2.7 and 7.4, respectively. Those familiar 

with the DP literature can interpret these ratios because of familiarity. However, when 𝜀𝜀  =  17.14, the 

ratio of probabilities is 27,784,809—a value far larger than what was typically in the literature before 

more real-world applications. Furthermore, there is a small probability of 10−10 that the ratio does not 

hold. Most people cannot interpret this privacy budget, including privacy experts. 

If privacy researchers cannot interpret the budget, then we are left wondering, “How can 

policymakers make informed decisions about trade-offs between utility and privacy?” One option is 

they cannot make an informed decision and select parameters without understanding the bound. The 

other option is they use ad hoc and post hoc measures of data privacy to interpret the results of the 

chosen privacy parameters. This latter option results in decisions based on assumptions similar to the 

traditional SDC methods. In other words, without better privacy-loss parameter interpretations, we 

revert the formally private methods to the traditional SDC methods. 

The second challenge is we need even more formally private use cases. Although we have more 

use cases, part of the reason we do not know reasonable values for various privacy parameters (e.g., 
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𝜖𝜖, 𝛿𝛿, and 𝜌𝜌) is because most formally private research is still largely theoretical. More privacy 

researchers need to implement formally private methods on real-world applications to fully 

understand the privacy-utility trade-off under several conditions. For example, privacy experts should 

explore more small, practical differentially private applications rather than highly complicated, 

theoretical scenarios to better discern some of the data challenges and how we should address them. 

The same idea applies to other SDC methods, such as synthetic data, where we do not have enough 

use cases. 

The last challenge is improving and creating data privacy and confidentiality communication and 

education materials. For example, suppose someone told you that they had data that contained 

records of individuals, including demographics such as their age, their sex, and their race along with 

financial information. They want to explore applying machine learning methods to gain unique insights 

into the data. What resources would you recommend? Now, suppose this person, with the same data, 

asked you how to apply data privacy and confidentiality methods. Besides this document, would you 

have any idea what resources to recommend? 

Snoke and Bowen (2021) posed these scenarios and stated that “a significantly higher percentage 

of readers probably will have answers to the questions posed in the first hypothetical scenario than to 

those in the second, which raises the question of why. Statisticians often use public microdata or 

tables, or access sensitive data through restricted data centers or agreements. Yet, few develop and 

implement data privacy and confidentiality methods that enable that access.” 

These hypothetical scenarios highlight the lack of well-written and well-designed computational 

resources. For the latter, not having readily available computational tools will hinder the accessibility 

for data users to implement SDC methods. They might not have the proper computing environment to 

run these methods or the technical background (expert knowledge and/or programming skills) to 

hand-code the methods. Moreover, hand-coding is more prone to errors and might be less efficient. 

Very few people in general have the technical knowledge and the coding ability to implement SDC 

methods. Some propose that we need to teach the next generation of data privacy researchers. 

However, most higher-education institutions do not offer data privacy courses. If these courses are 

taught, professors usually teach them at the graduate level in computer science departments, which is 

not representative of those who depend on and contribute to the field. 

What can we do to improve this situation? Hu and Bowen propose the following:11 



 2 8  D E C E N N I A L  D I S C L O S U R E  
 

 Incorporate data privacy and confidentiality into undergraduate curriculum and go beyond the 

basic introduction by, for example, applying appropriate methods to real data and evaluating 

their effectiveness. 

 Focus on how to translate theory to applications and deployment rather than on theory alone. 

 Advocate for more funding for applied research and deployment (i.e., computational tools and 

educational resources) instead of only on new method development. 

These measures alone will not address all the communication and education needs for data 

privacy and confidentiality, but they are a promising start.
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