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Decennial Disclosure

Although collecting more and better data can provide great benefits to society, such as furthering
medical research or targeting investments to those most in need, data privacy concerns surface from
those charged with protecting data when that information can be de-anonymized and used

maliciously.

For example, the US Census Bureau conducted a simulated attack on the 2010 Decennial Census
and discovered they could reidentify about one-sixth of the US population using publicly available
data (such as name, sex, and age) from external sources, like public social media profiles (Leclerc
2019). This type of attack on the 2020 Decennial Census has the potential to be even more disclosive
because of the detailed information collected, such as more race and ethnicity categories, that could
lead to more individuals being identified with great specificity. The reconstruction attack results and
the more detailed information available in the decennial census motivated the Census Bureau to
update their Disclosure Avoidance System (DAS) from traditional statistical disclosure control methods

to a formally private method—the TopDown Algorithm—for the 2020 Decennial Census.

However, this drastic change in how data privacy and confidentiality was defined for the 2020
DAS caused significant friction between the US Census Bureau and census data users. For instance,
leaders from states, counties, cities, and towns rely on census data for school planning, budgeting,
social program provisions, redistricting, revenue sharing, and a multitude of other statutory
requirements. These data users want more accurate data at granular geographic areas and fear that

the updated DAS will lead to incorrect public policy decisions.

This explainer aims to help readers better understand what formal privacy is and how the
TopDown Algorithm works. The explainer is also a continuation of “Personal Privacy and the Public
Good: Balancing Data Privacy and Data Utility” (Bowen 2021) and we encourage readers to read that

report first.

Introduction to the 2020 Census and Data Privacy

The decennial census data products affect how the United States apportion the 435 seats for the
United States House of Representatives, redistrict voting lines, plan for natural disasters, and conduct

many other purposes. Therefore, the Census Bureau’s mission is “...to count everyone once, only once,



and in the right place.” With this goal in mind, the US Census Bureau collects information on every

person and household at various geographic levels for the United States (figure 1).

FIGURE 1
US Census Bureau's Geographic Levels
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Source: Authors’ illustration.

Because the US Census Bureau collects such detailed information about individuals, the 1929
Census Act requires the Census Bureau to alter decennial census data with privacy-preserving
methods.! Specifically, this act enforces that individuals and businesses cannot be identified in publicly
released data. Since then, several laws have required the Census Bureau to protect census data
products. The most cited law is Title 13 of the US Code, which protects individual-level data. A
discussion on the US Census Bureau’s history of privacy protection and the interpretation of Title 13

is beyond the scope of this explainer. Interested readers should see work by Hotz and Salvo (2022).

Note that the Census Bureau uses other important geographic levels not shown in figure 1, such
as places, minor civil divisions, and American Indian and Alaska Native areas. We do not highlight
these other areas because the US Census Bureau focuses on the geographic levels shown in figure 1

when protecting the data.

In addition to the legal requirements, some people might not be ethically comfortable with data
users knowing certain characteristics of a group or area, such as where many people of certain racial
groups live (e.g., Asian Americans, considering the legacy of internment camps during World War Il
and the racial prejudice and discrimination that recently accompanied the COVID-19 pandemic). On

the other hand, data users, such as Asian American advocacy groups, might want access to such data
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to provide targeted services like financial support for Asian-owned businesses that struggled during

the pandemic. This is another example of the tension between data privacy and data utility.

The Census Bureau refers to the overall methodology to protect a census data product as the
DAS. The last time US Census Bureau updated the decennial DAS was for the 1990 Census, by
applying data swapping (figure 2 provides a summary of the 2010 DAS process). The Census Bureau
periodically updates the DAS because the technological landscape is constantly evolving. For instance,
modern smart phones have more computational power than the average desktop computer had in

2010.

FIGURE 2
2010 Disclosure Avoidance System Framework
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Source: Authors’ illustration.

To reassess if the US Census Bureau needed to update the DAS, they conducted a database
reconstruction attack. In other words, this type of attack evaluates whether too many independent
statistics are published based on confidential data to recreate the underlying confidential data with

little or no error. The Census Bureau tested this by

1. recreating the individual level 2010 Census (i.e., age, sex, race, and Hispanic or Non-Hispanic

ethnicity for every individual in each census block) from nine summary tables, and then

2. uniquely identifying approximately one in six records using publicly available data, such as
what could be found on social media profiles (Leclerc 2019). This rate is higher for smaller

groups, such as underrepresented racial groups in rural areas.

Figure 3 illustrates a high-level explanation of how the US Census Bureau executed the

reconstruction attack. For more detailed information about the reconstruction attack, see “The Census
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Bureau’s Simulated Reconstruction-Abetted Re-identification Attack on the 2010 Census” webinar

materials.?

Although the rate of reidentification from the 2010 Census is troubling, a potential data attacker
could not confirm whether (1) a match was correct or (2) the reconstructed data were correct before
the match without access to the Census Edited File, the confidential data that have been edited for
mistakes. Also, the Census Bureau has received criticism for their reconstruction attack. Ruggles and
Van Riper (2021) claim that the US Census Bureau did not test whether identifying individuals through
their reconstruction attack is more effective than a random guessing. Consider an analogy of clinical
trials, where the experiment must have a control group to confirm whether people get better or not
after a treatment. The authors describe the US Census Bureau's reconstruction attack as using just a
treatment group without a control group for comparison. Some people in the treatment group would
get better regardless of whether they received a treatment, and some people could be identified

regardless of whether they were included in the reconstruction attack.

FIGURE 3
2010 Census Reconstruction Attack
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Source: Authors’ illustration.

Data Privacy Definitions and Terminology

The debate over the 2010 Census reidentification attack raises the question of what a realistic data
privacy threat is. If you asked this question to a dozen different people, you would likely receive a
dozen different responses. This is because data privacy is a broad topic that includes data security,

encryption, access to data, and more.
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In the context of the census data products, our explainer focuses on applying data privacy and
confidentiality methods that provide privacy-preserving access to sensitive data. Although this area of
data privacy is very important, especially within the federal statistical system, a smaller share of people
know about it. Therefore, we need to cover the many definitions and terminologies that are widely
used in the data privacy and confidentiality field before discussing how the Census Bureau
implemented the 2020 DAS. We outline several definitions and terminology to keep discussions
consistent and avoid confusion, because the data privacy and confidentiality field often has conflicting
terms, or several terms are used to represent the same concept. We will also refer to “data privacy and
confidentiality” as “data privacy” to be concise, but as stated, outside of this context, the phrase “data

privacy” has many meanings.

Although data privacy and data confidentiality are certainly related, they are different, and both play a

role in limiting statistical disclosure risk.

Data privacy: the ability “...to determine what information about ourselves we will share with
others” (Fellegi 1972).

Data confidentiality: “the agreement, explicit or implicit, between data subject and data
collector regarding the extent to which access by others to personal information is allowed”
(Fienberg and Jin 2018).

Statistical disclosure control or limitation: statistical approaches to ensure data confidentiality
as a means of maintaining privacy.

As we learned in Bowen (2021), there is a necessary balance between data privacy and data utility (or
usefulness). This tension is often referred to in the data privacy literature as the “privacy-utility trade-
off.”

Data utility, quality, accuracy, or usefulness: how practically useful or accurate to the data are
for research and analysis purposes.

Original data: the uncleaned, unprotected version of the data, such as the raw census
microdata, which are never publicly released.

Confidential data: the cleaned version (meaning edited for inaccuracies or inconsistencies) of
the data; often referred to as the gold standard or actual data for analysis. For example, the
Census Edited File that is the final confidential data for the 2020 Census. This dataset is never
publicly released but may be made available to others who are sworn to protect confidentiality
and who are provided access in a secure environment, such as a Federal Statistical Research
Data Center.

Public data: the publicly released version of the confidential data, such as the US Census
Bureau’s public tables and datasets.
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The data privacy community or ecosystem encompasses a wide range of stakeholders:

Data users: individuals who consume the data, such as analysts, researchers, planners, and
decisionmakers.

Data privacy experts or researchers: individuals who specialize in developing data privacy and
confidentiality methods.

Data curators, maintainers, or stewards: individuals who own the data and are responsible for
its safekeeping.

Data intruders, attackers, or adversaries: individuals who try to gather sensitive information
from the confidential data.

Data Privacy Methodology Workflow

Given the importance of the 2020 Census and other data products, how does the US Census Bureau
and other data curators provide data users information from these confidential data? Generally, data

users obtain the information in two ways:

1. Direct access to the confidential data if they are trusted users (e.g., obtaining Special Sworn

Status to use the Federal Statistical Research Data Centers).

2. Access to public data or statistics, such as public microdata and summary tables, that are

produced by data curators and modified to protect confidentiality.

The latter is how most data users gain access to information from confidential data and is the
focus of this explainer. To create public data or statistics, data curators rely on statistical disclosure
control (SDC) methods to preserve data confidentiality. The process of releasing this information

publicly often involves the steps shown in figure 4.

We see that step 1 requires the data curator to determine the acceptable thresholds of disclosure
risk and utility. For the disclosure risks, the thresholds are frequently determined by law, such as Title
13 of the US Code? to “provide strong protection for the information [that the Census] collect[s] from
individuals and businesses.” In this example, the Data Stewardship Executive Policy Committee
“... serves as the focal point for decision-making and communication on policy issues related to
privacy, security, confidentiality and administrative records” for the Census Bureau, including the
interpretation of Title 13. Similar groups exist within various other federal agencies that make these

decisions.
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For the data utility, data curators often (and should) consult data users and establish data quality
metrics based on how the data users will analyze the data. The 2020 Census data, for example, are
used to determine boundaries of legislative districts. Thus, the Census Bureau produced and published

several relevant metrics to ensure data quality.

FIGURE 4
Data Privacy Workflow
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Determine thresholds for Select variables
disclosure risks and Remove Plls for
utility anonymization
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Develop SDC

method based Compare the

on disclosure data quality
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Repeat Steps 4 and 5 if the
disclosure risks are too high or if
the data utility results are too low.

Source: Authors’ illustration.
Note: PIl = personally identifiable information.

In step 2, the data curator must remove any personally identifiable information that is unnecessary
for the public data or statistics release, such as names or Social Security numbers. In step 3, the data
curator must then identify what features of the data should be altered with SDC methods. Sometimes
the data curator must decide which features of the data are high, medium, and low priority for
preserving the information. This helps the data curator and the privacy researcher determine to what

extent certain parts of the data should be altered to help balance the privacy-utility trade-off.

Steps 4 and 5 are the hardest parts of the workflow. We can imagine in the extreme case, if data
users want full data utility, then the data curator would release the confidential data unaltered. On the
other hand, to achieve only privacy, the data curator would never release the confidential data. In this

example, we see how data privacy and data utility naturally oppose one another. This is why steps 4
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and 5 become an iterative process in developing an SDC method, and making one part of the data

more useful reduces the data privacy guarantee (and vice versa).

For step 4, the privacy researcher must carefully determine how much to alter, change, or sanitize

the confidential information using a particular SDC method. Within the data privacy field, the

terminology defining each step of the SDC process can be inconsistent.

We break down SDC methods into three steps (but note that some SDC methods do not have the

last step).

Preprocessing: prioritizing which statistics or information to preserve (i.e., could be considered

step 3 in the workflow).
Privacy: applying a sanitizer to the desired statistic or information (i.e., altering the statistic).

Postprocessing: ensuring the results of the statistic or information are consistent with realistic

constraints (e.g., population counts should not be negative).

wn,

Note that in the privacy step, sanitizer is used with a lowercase “s”; some SDC methods use

capitalized “Sanitizer” as part of their formal name.

The privacy step requires the privacy expert to know the type of disclosure risk to protect the

confidential data against. Traditionally, there are generally three types of disclosure risk:

1.

2.

Identity disclosure risk occurs if the data intruder associates a known individual with a public
data record (e.g., a record linkage attack or when a data adversary combines one or more

external data sources to identify individuals in the public data).

Attribute disclosure risk occurs if the data intruder determines new characteristics (or
attributes) of an individual based on the information available through public data or statistics
(e.g., if a dataset shows that all people age 50 or older in a city are on Medicaid, then the data

adversary knows that any person in that city above age 50 is on Medicaid).

Inferential disclosure risk occurs if the data intruder predicts the value of some characteristic
from an individual more accurately with the public data or statistic than would otherwise have
been possible (e.g., if a public homeownership dataset reports a high correlation between the
purchase price of a home and family income, a data adversary could infer another person’s

income based on purchase price listed on Redfin or Zillow).
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Note that some federal statistical agencies are not concerned about inferential disclosure risk for
two reasons. First, one of the main reasons for releasing public data is to allow data users to infer and
identify relationships among various attributes. If an agency considered inferential disclosure risk, then
few datasets and statistics would be released. Second, inferential disclosure risk is predicting
aggregated attributes instead of individual, which means the data intruder would poorly predict
individual values. However, some other federal statistical agencies assess inferential disclosure risk
when there are high statistical relationships between certain attributes and an adversary can create an

extremely accurate model (Federal Committee on Statistical Methodology 2005).

After developing an SDC method that protects against certain types of disclosure risks, the data

curator and privacy research must assess data utility. Broadly, there are two ways to measure it:

1. General utility or global utility: measures the univariate and multivariate distributional
similarity between the confidential data and the public data (e.g., sample means, sample

variances, and the variance-covariance matrix).

2. Specific utility or outcome-specific utility: measures the similarity of results for a specific
analysis (or analyses) of the confidential and public data (e.g., comparing the coefficients in

regression models).

Some in the data privacy community argue that data utility does not necessarily mean accuracy

and are actively exploring other measures that best convey data quality, consistency, and accuracy.

Once the data curator and privacy expert find the right balance between privacy and utility, they
may proceed to publishing the data or statistics in step 6. However, the data curators and privacy
researchers should consult the data user community to determine what kind of published data and/or
statistics to release and ensure that information are fit for use, which is why achieving the balance is
so difficult. Here, we list examples of possible data products that a data curator could release after
applying SDC methods, roughly from most to least detailed:

"  microdata (e.g., public use microdata series or PUMS)

= summary tables (e.g., American Community Survey tables)

= summary statistics (e.g., multiple statistics on income in a state)

=  single statistics (e.g., maximum age in a county)

Curators could release one of these products after applying an SDC method, or they could release

them “on demand” to answer different questions using the data. Questions asked of the data are
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referred to in computer science terminology as queries, which are statistics. We will therefore refer to
them as statistics throughout the explainer to avoid confusion. Note that when reading more technical

data privacy papers, these questions are more commonly referred to as queries.

Introduction to Formal Privacy

We now better understand the challenges the US Census Bureau faces when creating the DAS to
protect against a privacy threat. In particular, the Census Bureau, as the data curator, must make
assumptions or judgement calls on how a data intruder would obtain sensitive information from public
data or statistics. They must ask themselves the following questions: How much disclosure risk is too
much, and what type? When evaluating disclosure risk, what assumptions can be made about how the
data intruder will approach the data? What about the resources the intruder has access to? Do these

assumptions hold in the context of the specific, real-world application?

These questions and many others motivated the creation of a concept known as formal privacy,
which provides a mathematical bound on the disclosure risk for any statistic applied to the confidential
data. Although methods developed within the formal privacy framework are considered SDC methods,
data privacy researchers often separate formal privacy from other SDC methods. We will refer to the
SDC methods and disclosure risk measures not developed under formal privacy as traditional SDC

methods and traditional disclosure risk definitions.

In this part of the explainer, we will cover a high-level overview of formal privacy, differential
privacy, and differentially private mechanisms. This summary will involve some mathematical intuition
and present some mathematical equations to prepare the reader for the next section on how the 2020
DAS works. For readers interested in a more technical review of similar content, see work by Bowen
and Garfinkel (2021).

Formal Privacy

We begin with what makes a privacy definition formally private. Although the privacy community has
not fully agreed on a common definition, formal privacy is defined by the Census Bureau® as a subset
of SDC methods that give “formal and quantifiable guarantees on inference disclosure risk and known

algorithmic mechanisms for releasing data that satisfy these guarantees.”

Traits of formally private mechanisms include the following:
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= Ability to quantify and adjust the privacy-utility trade-off, typically through parameters.

= Ability to rigorously and mathematically prove the maximum privacy-loss that can result from

the release of information (Bowen and Garfinkel 2021).

=  Formal privacy definitions also allow one to “compose” multiple statistics. In other words, a
data curator can compute the total privacy-loss from multiple individual information releases
(Bowen and Garfinkel 2021).

Simply put, the main difference between traditional SDC methods and formally private methods is
the ability to account for each piece of information being “leaked” from the confidential data. We can
think of traditional SDC methods as akin to a someone charging a limitless credit card; formally private
methods are akin to someone charging to a debit card with a set budget. In both scenarios, there is a
running bill, but only one requires constantly checking the balance. We can easily imagine that not
tracking that bill is the equivalent of releasing too many statistics with enough accuracy, which could
compromise the confidential data (Bowen and Garfinkel 2021). Although in both traditional and formal
privacy settings data curators must limit the type and number of questions asked of the data, they are

faced with “tracking the bill” under a formal privacy framework.

Differential Privacy and Other Formally Private Definitions

We now understand the key differences between formally private definitions and traditional
disclosure risk definitions. But what are some formally private definitions? The most well-known
formal privacy definition is differential privacy (DP), first introduced by Dwork and colleagues (2006).
We emphasize that DP is a strict mathematical definition that a method must satisfy (or meet the
mathematical conditions) to be considered differentially private, not a statement or description of the

data itself.

Simply put, DP does not make assumptions about how a data intruder will attack the data and the
amount of external information or computing power an actor has access to, now or in the future.®

Instead, DP assumes the worst-case scenario to provide a strong privacy guarantee:

=  The data intruder has information on every observation except one
=  The intruder has unlimited computational power

=  The missing observation is the most extreme possible observation (or an extreme outlier) that

could alter the statistic
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Mathematically, DP states that the log of the ratio of the probability that any individual
observation was or was not in the data that generated the output is bounded by the value of €, where
€ > 0. This means that if we use a privacy-loss budget of 1, then that ratio converts to e* ~ 2.72 and
represents the bound on the probability that the above assumptions fail because we are releasing
information. Informally, DP guarantees the output of a differentially private mechanism will be roughly

the same whether the individual observation is in the data or not (figure 5).

FIGURE 5
Visual Representation of Differential Privacy

Mechanism

Conf. data 4’ Answer A’
e T |
[ |

Source: Authors’ illustration.

w

Privacy researchers have also developed other formally private definitions and consider these
alternative definitions as relaxations of the DP definition because they “ease up” on the strong privacy
guarantee that DP provides (i.e., the worst-case scenario listed earlier). We briefly cover the two most
popular ones at a high level with some math to explain the relationships among the three formal
privacy definitions. Note that privacy experts often refer to the original definition of DP as pure-DP or

e-DP given the many DP relaxations.

A popular DP relaxation is approximate-DP or (¢, §)-DP, which has similar levels of privacy
guarantee as e-DP, but with a small probability (i.e., § € [0,1]) that the DP ratio does not hold (Dwork
et al. 2006; Dwork and Roth 2014). In other words, if § = 1073, then there will be a 0.001 percent

chance that a (¢, §)-DP method will release the confidential value.
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Dwork and Rothblum (2016) created concentrated DP with the purpose of reducing the privacy
loss over multiple computations. Bun and Steinke (2016) later improved the definition and called it

zero-concentrated-DP or p-zCDP. The authors also proved that if a method satisfies p-zCDP, then it
satisfies (¢,5)-DP, where € = p + 2,/plog(1/5) forany § > 0.

There is also a direct relationship between p-zCDP and e-DP, where if a method satisfies e-DP,
then the method satisfies p-zCDP, where p = 1/2 €2. These conversions will be particularly relevant
for the section on the 2020 Decennial Census. The US Census Bureau initially announced they would
be using pure-DP but changed to approximate-DP and zero-concentrated-DP to reduce the amount of
noise to the 2020 Census data products. Unfortunately, this shift in formally private definitions
created confusion among the census data user community. We discuss this communication issue

further in our takeaways section.

Privacy-Loss Budget

In contrast to the traditional disclosure risk types, how does DP and the other DP relaxations compute
or account for the privacy-loss or disclosure risk when releasing information? These definitions use
the concept of a privacy-loss budget, typically represented mathematically as ¢. Although there are
two other privacy parameters (6 and p), we will focus on € for simplicity and ease of conceptual
explanations until the next section on the 2020 Decennial Census. The privacy-loss budget bounds
the disclosure risk associated with releasing data or statistics. It can be thought of as a knob that
adjusts the trade-off between data privacy and utility. Some things to keep in mind about the privacy-

loss budget are as follows:

=  The data curator must decide the privacy-loss budget (i.e., the total amount of ¢) before the
release of any data or statistic. Like a real budget, when privacy-loss budget is exhausted, no

more information from the confidential data is released.

=  Alarger value of € increases the maximum disclosure risk (i.e., the upper bound of the

disclosure risk) associated with a given release of information. Simply put,

» larger € = less noise potentially added to a statistic = more accuracy, but less privacy, and

»  smaller e = more noise potentially added to a statistic = less accuracy, but more privacy.

For a visual representation, figure 6 shows the image becoming clearer or more accurate as €

increases.
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FIGURE 6
lllustration of Increased € Results in a Clearer Image

As € increases, the image becomes clearer (more accuracy).

Source: Authors' illustration. Original image is Flowers in a Vase by Philip van Kouwenbergh and is in the public domain.

Earlier in the explainer, we stated that the trade-off between data privacy and utility could be
explained in the extreme case of releasing the confidential data (i.e., maximum utility) or not releasing
the confidential data (i.e., maximum privacy). In the DP framework, we can explain the scenario with e.
When € - o, we obtain perfect utility, but no privacy. When € — 0, we obtain perfect privacy, but no
utility. In other words, as with traditional SDC methods, the privacy-loss budget cannot eliminate all
risk. When the data curator adjusts the privacy-loss budget, they are adjusting the strength of the
privacy guarantee provided by DP.

Additionally, the data curator must also determine how to distribute the privacy-loss budget over
the many possible public datasets and statistics. For instance, we can imagine the privacy-loss budget
as a set monthly budget for household expenses (e.g., housing, groceries, utilities, and transportation).
Some people might want to equally allocate their funds to each expense, whereas others might think
that groceries should cost more than transportation, but not more than housing. Likewise, some data
curators might prioritize releasing multiple statistics, while others might allocate the full privacy
budget to allow the release of microdata. In other words, data curators must consider how they will
allocate the privacy-loss budget for each individual release of information while maintaining the

overall budget for the system.

Given that data curators could distribute their overall privacy-loss budget across several public
datasets or statistics in many ways, some would want guidance on allocating the privacy-loss budget.
Although Dwork and colleagues (2006) proposed DP over 16 years ago, setting an appropriate
privacy-loss budget is still an open question. All members of the data privacy community should be

involved in this discussion, but many advise that the choice is ultimately up to public policymakers.
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However, although policymakers are the most equipped to understand the consequences of the

privacy-loss, they are likely the least equipped to understand what € means.

For instance, public policymakers would probably not know that DP defines € as logarithmic (e.g.,
€ =1, 2, and 3 becomes approximately 2.7, 7.34, and 20.01, respectively) and an inequality (i.e., €

represents the upper bound for disclosure risk, which means the actual disclosure risk could be lower).

What do privacy experts suggest? Early privacy research considered € being 1 or 2 as the
maximum privacy-loss budget for releasing public data or statistics. However, much larger values are
appearing in more recent applications. For example, the US Census Bureau applied their new
differentially private method, called the TopDown Algorithm, to the 1940 and 2010 Census and
published the resulting data as a demonstration. Data users could then compare the demonstration
data against the unaltered 1940 Census data’ and the original 2010 Census data release. Table 1
shows the values that the Census Bureau used for the demonstration data throughout multiple

releases.

TABLE 1
Demonstration File € and Ratio Values
The € values that the US Census Bureau used for the demonstration persons file

€ Ratio
0.25 1.28
0.50 1.65
0.75 2.12
1.00 2.72
2.00 7.39
4.00 54.60
4.50 90.02
6.00 403.43
8.00 2,981.96
10.30 29,733.62

Source: Authors.

In June 2021, the Census Bureau® committed to € of 17.14 for the persons file and 2.47 for the
housing file, which are part of the redistricting data. Although the difference between the two
numbers is 14.67, the privacy-loss budget for the persons file converts to 27,784,809 (i.e., e1714),
whereas the housing file privacy-loss budget becomes 11.82 (i.e., e?*7). In other words, the persons

file has a privacy-loss budget that is roughly 2.35 million times larger than the housing file.
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What about other real-world applications? Rogers and colleagues (2020) compared several
industry applications of DP. One of the largest values of ¢ is 769 (a monthly budget), which converts
to a value rapidly approaching infinity. In recent years, there have been more differentially private

applications that provide further context on setting an appropriate privacy-loss budget.

At this point, you're likely still confused about what all these privacy budget values mean for
public policy decisions. The simple answer is the community still doesn’t know, other than that higher
privacy-loss budget values mean more information is leaked from the confidential data. We need more
applications and conversations with data users and privacy researchers to best inform policymaking
decisions on the best balance between data privacy and utility. We discuss this further at the end of

this report.

Global Sensitivity

In addition to the privacy-loss budget, most differentially private methods rely on the concept called
global sensitivity, which describes how resistant the differentially private sanitizer is to the presence
of outliers (Bowen and Garfinkel 2021). We can think of the global sensitivity as another value that
helps determine how much noise is needed to protect the released data or statistic, because some

information is more sensitive than other information to outliers.

TABLE 2
Demonstration File € and Ratio Values
A fictitious socioeconomic dataset with participants’ names, age, and wealth, along with Elon Musk’s

information

Person Age Wealth
Alex 28 $51,489
Andrea 26 $36,072
Bob 62 $85,356
Beth Ann 58 $77,226
Daniel 17 $623
Donna 34 $41,543
Edward 45 $115,879
Elizabeth 53 $99,253
Elon 51 $263.6 billion
Nikola 86 $0

Source: Authors’ hypothetical and “The Real-Time Billionaires List,” Forbes, accessed July 15, 2022,
https://www.forbes.com/real-time-billionaires/#2cfd93953d78.

16 DECENNIAL DISCLOSURE


https://www.forbes.com/real-time-billionaires/#2cfd93953d78

We borrow the example explained in Bowen (2021) to help explain this concept along with table 5
to provide example values. Imagine the data we want to protect contains socioeconomic information
and the statistic we want answered is, “What is the median wealth of a group of individuals?” Under
DP, we must consider the change of the most extreme possible record that could exist in any given
data that has demographic and financial information. For our example, that person is Elon Musk, who
was the wealthiest person in the world as of the publication of this explainer (table 2). If Musk is
present or absent in the data, the median wealth should not change too much. For instance, from the
values in table 2, the median wealth is $64,357.50 with Musk in the data. The median wealth becomes
$51,489 without Musk. This means we can provide a more accurate answer by applying less
alterations to the median income statistic, because it is less sensitive to (or more robust against) the
extreme outlier, Musk. Now consider the question, “What is the average wealth of a group of
individuals?” Unlike the previous statistic, the answer would significantly change if Musk were present
or absent from the data. From our values in table 2, the average wealth would be $26,360,050,744
with Musk and $56,382.33 without Musk. To protect the extreme case, a differentially private method

would need to provide a significantly less accurate answer by altering the statistic more.

Gaussian Mechanism

So what is an example of a differentially private sanitizer (or a differentially private method that alters
a statistic) that uses the privacy-loss budget and global sensitivity? We will walk through how to apply
a popular differentially private sanitizer, called the Gaussian mechanism. This sanitizer adds noise to a
statistic by drawing values from a Gaussian distribution (i.e., a normal or bell-curve distribution). This
distribution is centered at zero and its variability (i.e., how wide or narrow the distribution is) changes
based on the privacy-loss parameters, € and &, and the global sensitivity of the target statistics. Having
the distribution centered at zero means there is a higher probability of adding very little or no noise to

the confidential data statistics, which is ideal for data utility.

How do the privacy parameters and the global sensitivity of a statistic affect the noise variability?
Suppose the statistic we want to release is a count, which has a global sensitivity of 1. If we want to
have a higher probability of adding very little noise to our count statistic (more accuracy), then we
want to increase the privacy parameter values (¢ and/or §). If we want to add more noise to our count
statistic (more privacy), then we want to decrease the privacy parameter values. In figure 7, we show
how the variability of the Gaussian distribution increases (i.e., the curve flattens out more) when we

decrease €. This translates to having a higher probability of adding more noise to our count statistic. In
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our figure, we don't change &, but changing § will also affect the variability of the Gaussian

distribution similarly.

FIGURE 7
Gaussian Distribution with Different Values of € with Global Sensitivity = 1 and § = 10~

== Epsilon=0.1 Epsilon=0.5 == Epsilon=1

Source: Authors’ illustration.

Suppose now we have three different statistics that have global sensitivities of 1, 2, and 3,
respectively. We also want to equally allocate the same amount of privacy-loss budget to each
statistic (e.g., e = 1 and 6 = 10”7). When a statistic has a higher global sensitivity (i.e., less robust to
outliers), we will need to add more noise to protect that statistic for the same privacy-loss budget.
Figure 8 illustrates how the variability of the Gaussian distribution increases when the global

sensitivity of a statistic is large for a set privacy-loss budget.

FIGURE 8
Gaussian Distribution with Different Values of Global Sensitivity withe = 1 and § = 1077

== Global Sensitivity = 1 Global Sensitivity =2 == Global Sensitivity = 3

Source: Authors’ illustration.
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Note that for the 2020 Decennial Census, the Census Bureau used a similar sanitizer called the
discrete Gaussian distribution, which adds discrete values to a statistic instead of continuous values to

ensure the noise added to count statistics resulted in integer values.

Models of Differential Privacy

Now that we understand how a formally private sanitizer works, how do privacy researchers
implement them in practice? Over the years, roughly two models or frameworks for applying formally
or differentially private sanitizers and methods have arisen. Bowen and Garfinkel (2021) present two
models (trusted curator and local), but we will discuss differentially private synthetic microdata as a

third model here because it encompasses a large part of the literature.

FIGURE 9
Trusted Curator Model lllustration

Differentially private
microdata
— —

—

i

Differentially private
statistics

-

Source: Authors’ illustration.

B

TRUSTED CURATOR MODEL

In the trusted curator model, a centralized data curator receives confidential data, creates the data
products, applies the differentially private method, and releases the results. This means that if the data
curator has a set privacy-loss budget, then the curator must stop releasing information when the
budget is reached. For example, Uber created a differentially private system that allowed their
analysts within the company to evaluate customer experience through targeted requests without
seeing confidential individual trip or rider details (Johnson, Near, and Song 2018). In this situation, one
part of Uber is the data curator, and the other is the data user. Figure 9 shows how the trusted curator

model works for generating differentially private microdata and statistics.
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DIFFERENTIALLY PRIVATE SYNTHETIC MICRODATA

Differentially private synthetic microdata is DP applied to a statistical model of the confidential data
(shown in the top part of figure 9). The privacy-protected model is then used to create individual
records for release, like synthetic data generation. Although this model is considered a type of the
trusted curator model, it is one of the most common applications of DP. The differentially private
synthetic microdata is popular because once the microdata is generated it can be distributed or
repeatedly analyzed without adding to overall privacy loss. However, creating accurate differentially

private synthetic microdata is very difficult, particularly for data with more than a few columns.

FIGURE 10
Local Differential Privacy Model lllustration

N\
Differentially private (Untrusted)
data product data user

iy

\

}

Source: Authors’ illustration.

LOCAL DIFFERENTIAL PRIVACY

Local DP allows the participant to add DP locally to their own data before sending that information to
the curator (figure 10). Essentially, the local model sanitizes the data upon collection. This framework
trusts no one, not even the data curator. The general idea is that rather than a global or overall
privacy-loss budget being applied to the entire confidential data, each data participant or data
collection point receives its own privacy budget. However, this model substantially adds more noise to
locally noised microdata than to data products created by a trusted curator (Bowen and Garfinkel

2021).
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Introduction to 2020 Disclosure Avoidance System

Although the formal privacy framework avoids the ad hoc nature of traditional SDC methods, we
learned some of the difficulties in implementing formally private methods. For instance, a data curator
must answer new questions: Which formally private definition should be used? What is an appropriate
value for the privacy-loss budget? What are the utility measures to ensure data quality and usability?
Once a model of formal privacy is identified, how is a formally private method created? And what
communication materials are needed to explain the formally private method to data users, such as

public policymakers?

In this section, we walk through how the US Census Bureau tackles these questions when
developing the 2020 DAS.

Privacy and Utility Measures

After the 2010 reconstruction attack, the US Census Bureau started to explore various formally
private definitions. The Census Bureau began with pure-DP and eventually settled on zero-
concentrated differential privacy (p-zCDP, a DP relaxation), which can be converted to (¢, §)-DP. The
US Census Bureau changed to p-zCDP because of how multiple Gaussian distributions compose. At a
high level, the Census Bureau can reduce the overall amount of noise added to the data because
multiple Gaussian distributions create a Gaussian distribution. Also, adding noise from a Gaussian

distribution does not satisfy pure-DP.

In terms of communication, the US Census Bureau continued to report the privacy parameter
values as € and §. The Census Bureau likely made this decision to avoid confusion after first using

pure-DP for many of the demonstration data (Abowd and colleagues 2022; US Census Bureau 2021).

When selecting the privacy-loss budget, the US Census Bureau tested out several values (table 1)
against various utility metrics. However, there are thousands of data use applications, ranging from
allocating congressional seats to determining the number of restaurant permits to issue. The Census

Bureau therefore implemented several utility metrics, such as, the following:

= General utility

»  mean absolute error
»  mean numeric error

»  root mean squared error
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»  mean absolute percent error
»  coefficient of variation

»  total absolute error of shares

= Qutcome specific

»  decisions on redistricting voting lines or school districts
»  total absolute error of shares metric by county within each state as a share of that state,
by incorporated place as a share of that state, and by minor civil divisions as a share of

that state

A full list of the metrics can be found in the “Revised Data Metrics for 2020 Disclosure

Avoidance” document.?

The US Census Bureau used these metrics and more when determining the privacy-loss budget.
During testing, they decided to split the redistricting file into two parts, a persons file and a housing
units file. For the persons file, the Census Bureau used § = 1071° and p = 2.56. These values convert
toe=17.14(i.e, p + L/plogT/d = €). For the housing units file, the US Census Bureau used § =
1071% and p = 0.07, which converts to € = 2.47. We will cover how p is allocated to each target

statistic in the next subsection.

Statistical Disclosure Control Method

Similar to traditional SDC methods, we can break down formally private methods into the
preprocessing, privacy, and postprocessing steps. Here, we will focus on the persons file of the 2020
DAS, but general steps apply to the housing units file as well. For more technical details of the 2020
DAS, see work by Abowd and colleagues (2022).

The Census Bureau first had to calculate the crosstabulation (or marginal counts) of all variables for
each geographic level (from state to census blocks) from the confidential data or Census Edited File.

The US Census Bureau (2021) lists the statistics of interest as follows:

= 1 total count

= 63 race, 2 ethnicity (Hispanic or Latino/Not Hispanic or Latino), 2 voting age (under 18

years/18 years and older)
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= 3institutional versus noninstitutional group quarter types

= 1 residential and 7 possible group quarter types for a total of 8 (e.g., dorms and prisons)
= 126 possible combinations of race and ethnicity

= 126 possible combinations of race and voting age

= 4 possible combinations of ethnicity and voting age

= 252 possible combinations of race, ethnicity, and voting age

= 2,016 possible combinations of race, ethnicity, and voting age at each residential and group

quarter type

For example, one of the possible statistics is the number of Asian Americans alone who are under

18 in a residential housing unit at the census tract level.

Essentially, the US Census Bureau applies the Gaussian mechanism to all the possible combinations
listed earlier unless that combination has no observations (i.e., treat as a structural zero) at each
geographic level. However, the confusing part is how the Census Bureau allocates the privacy-loss

budget for the different statistics at each geographic level.

TABLE 2
Privacy-Loss Budget: People
The p allocation that the US Census Bureau used for the person file of the 2020 Census

Geographic level Rho allocation
United States 104/4,099 =~ 0.025
State 1,440/4,099 ~ 0.351
County 447/4,099 ~ 0.109
Tract 687/4,099 ~ 0.168
Optimized block group 1,256/4,099 ~ 0.306
Block 165/4,099 ~ 0.040

Source: US Census Bureau (2021).

We recreate the tables from the US Census Bureau (2021) to help explain how the US Census
Bureau allocated the privacy-loss budget (p in this case). First, the Census Bureau allocated a
proportion of the total or global p to geographic levels. Table 2 lists the p allocations, which sum to
4,099/4,099.
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Mathematically, this becomes

Ptotal = Pus + Pstate + pCounty + Prract + PBilock Group + PBlock

104 1,440 447 687 1,256 165
——— X256 +—=X256+——-X256 +—-X%X256+——-X%X256+

= . X 2. = 4.
4,099 4,099 4,099 4,099 4,099 4,099 2.56 = 2.56

After allocating p to each geographic level, US Census Bureau divided that geographic level’s
privacy-loss budget further for each of the race, ethnicity, and voting age statistics. For the sake of
simplicity, we focus on the “Block” column in the “Per Query Privacy-Loss Budget: People” in US
Census Bureau (2021) and recreate this information in this report in table 3. From table 2, we know
that pgioc = 165/4,099 x 2.56 = 0.10. This means pg;, = 0.10 is allocated proportionally to the 11

statistics in table 3.

What does that mean for a specific statistic? Suppose we wanted to sanitize the block total
population. Table 3 lists that 5/4,097 of the 0.10 privacy-loss budget is allocated to that statistic,
which comes out to roughly 0.0001. Because the Census Bureau used a discrete Gaussian distribution,
the spread parameter (this is not the variance) is ? = 1/p = 9939. This means if we made 100 draws
from this distribution, then about 90 of them will be between -164 and 164. In other words, 90
percent of the time, the potential noise added to the block population statistic will be between -164
and 164.

TABLE 3
Per Query Privacy-Loss Budget: People
The p allocation that the US Census Bureau used for the personal file of the 2020 Census

Query Rho allocation
TOTAL 5/4,097 ~ 0.001
CENRACE 9/4,097 ~ 0.002
HISPANIC 5/4,097 =~ 0.001
VOTINGAGE 5/4,097 =~ 0.001
HHINSTLEVELS10 5/4,097 =~ 0.001
HHGQ 5/4,097 =~ 0.001
HISPANIC x CENRACE 21/4,097 ~ 0.005
VOTINGAGE x CENRACE 21/4,097 ~ 0.005
VOTINGAGE x HISPANIC 5/4,097 ~ 0.001
VOTINGAGE x HISPANIC x CENRACE 71/4,097 ~ 0.017
HHGQ x VOTINGAGE x HISPANIC x CENRACE 3,945/4,097 =~ 0.963

Source: US Census Bureau (2021).
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However, note that this potential noise is for changing one statistic and the redistricting file has

thousands of statistics. Further, the 2020 DAS truncates or reduces the potential noise from all these

statistics further using mathematical properties when composing multiple Gaussian distributions.

Simply put, the -164 and 164 range is reduced to a much smaller one. How much has yet to be

reported. For more technical details, see work by Abowd and colleagues (2022).

After adding noise to each statistic, the TopDown Algorithm is the procedure that enforces the

invariant statistics (i.e., no change to the statistics) and constraints (e.g., the population counts in all

counties in the state should equal the state population) listed below. Note that many refer to the 2020

DAS as the TopDown Algorithm even though the TopDown Algorithm only encompasses the

postprocessing step.

" |nvariant statistics:

»

»

»

Total population in each state, the District of Columbia, and Puerto Rico
Total number of housing units within each census block

Number of group quarter facilities by type within each census block

= Constraints:

Counts must be integers

Sums of rows and column margins must sum to the total populations

Counts must be consistent within tables, across tables, and across geographies

If there are zero housing units and zero group quarters at a geographic level, then no
people may be assigned to that geography

Number of people in a group quarter is equal to or greater than 1

Number of people in a housing unit or group quarter is less than or equal to 99,999
Geographic areas cannot have everyone under the age of 18 except areas with certain
group quarter populations (e.g., juvenile detention centers)

Census Edited File constraints (such as, if person two is the “natural child” of person one,

then person two cannot be older than person one).

Technical details on how the TopDown Algorithm optimizes these invariants and constraints can

be found in work by Abowd and colleagues (2022). Also, note that the full list of edit specifications for

each Census Edited File is not public record.
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Takeaways and Ongoing Challenges

In this explainer, we recapped the basics of data privacy, learned about formal privacy, and understood
how the US Census Bureau implemented the TopDown Algorithm for the 2020 Census. We learned

the following:

= Unlike traditional SDC methods, formally private methods quantify and bound the disclosure

risk associated with releasing information from the confidential data.

=  Formal privacy definitions use the idea of a privacy-loss budget that adjust the amount of
maximum disclosure risk (the upper bound of the disclosure risk) associated with releasing

information from the confidential data.

» larger € = less noise potentially added to a statistic = more accuracy, but less privacy

»  smaller e = more noise potentially added to a statistic = less accuracy, but more privacy

= How public policymakers set the privacy-loss budget is still an open question.

= Census data users must now answer the question, “How good is good enough?” and provide

new utility measures and use cases to the US Census Bureau.

The final two takeaways leave us with three major challenges. First, we do not have clear
interpretations of the worst-case privacy-loss for the privacy parameters ¢, §, or p. As shown in table
1, when € is one or two, the ratio of probabilities is around 2.7 and 7.4, respectively. Those familiar
with the DP literature can interpret these ratios because of familiarity. However, when e = 17.14, the
ratio of probabilities is 27,784,809 —a value far larger than what was typically in the literature before
more real-world applications. Furthermore, there is a small probability of 1071° that the ratio does not

hold. Most people cannot interpret this privacy budget, including privacy experts.

If privacy researchers cannot interpret the budget, then we are left wondering, “How can
policymakers make informed decisions about trade-offs between utility and privacy?” One option is
they cannot make an informed decision and select parameters without understanding the bound. The
other option is they use ad hoc and post hoc measures of data privacy to interpret the results of the
chosen privacy parameters. This latter option results in decisions based on assumptions similar to the
traditional SDC methods. In other words, without better privacy-loss parameter interpretations, we

revert the formally private methods to the traditional SDC methods.

The second challenge is we need even more formally private use cases. Although we have more

use cases, part of the reason we do not know reasonable values for various privacy parameters (e.g.,
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€, 6, and p) is because most formally private research is still largely theoretical. More privacy
researchers need to implement formally private methods on real-world applications to fully
understand the privacy-utility trade-off under several conditions. For example, privacy experts should
explore more small, practical differentially private applications rather than highly complicated,
theoretical scenarios to better discern some of the data challenges and how we should address them.
The same idea applies to other SDC methods, such as synthetic data, where we do not have enough

use cases.

The last challenge is improving and creating data privacy and confidentiality communication and
education materials. For example, suppose someone told you that they had data that contained
records of individuals, including demographics such as their age, their sex, and their race along with
financial information. They want to explore applying machine learning methods to gain unique insights
into the data. What resources would you recommend? Now, suppose this person, with the same data,
asked you how to apply data privacy and confidentiality methods. Besides this document, would you

have any idea what resources to recommend?

Snoke and Bowen (2021) posed these scenarios and stated that “a significantly higher percentage
of readers probably will have answers to the questions posed in the first hypothetical scenario than to
those in the second, which raises the question of why. Statisticians often use public microdata or
tables, or access sensitive data through restricted data centers or agreements. Yet, few develop and

implement data privacy and confidentiality methods that enable that access.”

These hypothetical scenarios highlight the lack of well-written and well-designed computational
resources. For the latter, not having readily available computational tools will hinder the accessibility
for data users to implement SDC methods. They might not have the proper computing environment to
run these methods or the technical background (expert knowledge and/or programming skills) to

hand-code the methods. Moreover, hand-coding is more prone to errors and might be less efficient.

Very few people in general have the technical knowledge and the coding ability to implement SDC
methods. Some propose that we need to teach the next generation of data privacy researchers.
However, most higher-education institutions do not offer data privacy courses. If these courses are
taught, professors usually teach them at the graduate level in computer science departments, which is

not representative of those who depend on and contribute to the field.

What can we do to improve this situation? Hu and Bowen propose the following:1*
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= |ncorporate data privacy and confidentiality into undergraduate curriculum and go beyond the
basic introduction by, for example, applying appropriate methods to real data and evaluating

their effectiveness.
=  Focus on how to translate theory to applications and deployment rather than on theory alone.

= Advocate for more funding for applied research and deployment (i.e., computational tools and

educational resources) instead of only on new method development.

These measures alone will not address all the communication and education needs for data

privacy and confidentiality, but they are a promising start.
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