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In this paper, we analyze the impact of classroom peers on individual student performance with a 
unique longitudinal data set covering all Florida public school students in grades 3–10 over a 
five-year period. Unlike many previous data sets used to study peer effects in education, our data 
allow us to identify each member of a given student’s classroom peer group in elementary, 
middle and high school as well as the classroom teacher responsible for instruction. As a result, 
we can control for individual student fixed effects simultaneously with individual teacher fixed 
effects, thereby alleviating biases due to endogenous assignment of both peers and teachers, 
including some dynamic aspects of such assignments. Our estimation strategy, which focuses on 
the influence of peers’ fixed (observed and unobserved) characteristics on individual test score 
gains, also alleviates potential biases due to measurement error of peer quality, simultaneity of 
peer outcomes, and mean reversion. Under linear-in-means specifications, estimated peer effects 
are small to nonexistent, but we find some sizable and significant peer effects within nonlinear 
models. For example, we find that peer effects depend on an individual student’s own ability and 
on the ability level of the peers under consideration, results that suggest Pareto-improving 
redistributions of students across classrooms and/or schools. Estimated peer effects tend to be 
smaller when teacher fixed effects are included than when they are omitted, a result that suggests 
co-movement of peer and teacher quality within a student over time. We also find that peer 
effects tend to be stronger at the classroom level than the grade level.  

 
 
 

___________________________________ 

  
We wish to thank the staff of the Florida Department of Education’s K–20 Education Data Warehouse for their 
assistance in obtaining and interpreting the data used in this study. The views expressed is this paper are solely our 
own and do not necessarily reflect the opinions of the Florida Department of Education.



I. Introduction 
 
The potential for peers to affect individual achievement is central to many important policy 

issues in elementary and secondary education, including the impacts of school choice programs, 

ability tracking within schools, “mainstreaming” of special education students, and racial and 

economic desegregation. Vouchers, charter schools and other school choice programs may 

benefit those who remain in traditional public schools by engendering competition that leads to 

improvements in school quality, but may also harm those left behind by diminishing the quality 

of their classmates (Epple and Romano 1998; Caucutt 2002). Grouping students in classrooms by 

ability can likewise have significant impacts on student achievement, depending on the 

magnitude of peer influences (Epple, Newlon, and Romano 2002). The effect of desegregation 

policies on achievement depends not only on potential spillovers from average ability, but on 

whether different peers exert different degrees of influence on individual outcomes (Angrist and 

Lang 2004; Cooley 2007; Fryer and Torelli 2005). 

Despite the importance of these issues for American education policy, there are relatively 

few empirical studies of the magnitude and structure of peer effects on academic achievement in 

U.S. primary and secondary schools. A number of recent studies have attempted to estimate peer 

effects in the K–12 education context, yet most have been hampered by data limitations that 

constrain the scope of their analyses and the estimation techniques they are able to employ. With 

a unique panel data set encompassing all public school students in grades 3–10 in the state of 

Florida over the period 1999/00–2003/04, we have unprecedented resources with which to test 

for peer effects in the educational context. Unlike any previous study, we simultaneously control 

for the fixed inputs of students, teachers and schools in measuring peer influences on academic 

achievement. These controls sharply limit the scope for biases from endogenous selection of 
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peers and teachers and permit a sharper estimate of the influence of classroom peers (as opposed 

to grade-level-at-school peers), than previous studies. Further, unlike previous work, which 

focuses almost exclusively on peer effects in elementary school, our data allow us to compare the 

impact of peer influences on math and reading achievement in elementary, middle and high 

school. 

In addition to exploiting an extremely rich data set, we also employ a new analytical 

technique, adapted from Arcidiacono et al. (2005), that alleviates a number of problems 

associated with using student performance to measure peer influence. Typically, past research 

uses contemporaneous or lagged peer outcomes to measure peer ability. This can lead to a 

number of related estimation problems, such as simultaneity bias, measurement error bias, and 

biases caused by regression to the mean. Because observed academic outcomes, whether current 

or lagged, constitute a noisy measure of a student’s fixed inputs, measures of peer group 

influences based on such performance measures will be noisy and peer effects estimates may be 

biased downward. To better capture peer group characteristics, we estimate “peer fixed effects” 

simultaneously with individual fixed effects. The method has been shown to perform well even 

with a small number of observations per student. We extend the work of Arcidiacono et al. by 

estimating models which allow peer effects to operate through multiple moments of the 

distribution of the peer-group’s fixed effects and in which the effects of peer-group ability 

depend on individual ability. 

An alternative means of avoiding selection biases is to conduct a true experiment in 

which students and teachers are randomly assigned to classrooms. However, results from 

experimental data should not automatically be privileged, for reasons both theoretical and 

practical. First and foremost, a large-scale trial with random assignment of teachers and students 
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to classrooms is extremely difficult to conduct. While there are some interesting cases of large-

scale random assignment at the college level (Sacerdote 2001; Carrell et al. 2008) and in foreign 

countries (Carman and Zhang 2008; Ding and Lehrer 2007; Duflo et al. 2008; Lai 2008), the 

legal and political hurdles to random assignment at the elementary and secondary level in the 

United States are daunting. As a result, there has been only one large-scale randomized trial in 

U.S. primary and secondary schools, Tennessee’s Student/Teacher Achievement Ratio (STAR) 

experiment. Second, even in randomized trials, selective initial consent by schools to participate 

or selective individual attrition once the experiment has begun (as observed in the STAR 

experiment) can bias the results. Third, the magnitude and shape of peer influences may be 

different depending on whether peers are chosen deliberately—by the individual, her family, or 

school officials—or at random. Fourth, Arcidiacono et al. (2005) show via simulations that 

measured peer effects may be biased downward among randomly assigned classmates and that, 

counterintuitively, the presence of some degree of sorting on student ability may enable more 

accurate estimates of peer effects.  

Based on our quasi-experimental approach, we find that peer effects are small, but 

statistically significant, when measured with linear-in-means models. We find generally larger 

and (both statistically and economically) significant peer effects in nonlinear models. In most 

specifications, omission of teacher effects leads to larger estimated peer effects, indicating that 

peer and teacher quality may co-vary over time within students and that student fixed effects 

may not be sufficient for alleviating “correlated effects” biases. Another advantage of controlling 

for teacher effects is that peer effects estimates are more precise. While we do not claim to 

identify the teacher effects themselves, controlling for teacher effects assists in the identification 
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of peer effects by controlling for the possibility that students are assigned to classrooms/teachers 

on the basis of transient rather than fixed factors.  

In the nonlinear models, we find that the magnitude of peer effects depend on an 

individual student’s own ability and on the ability of the peer group under consideration. Both 

results imply that there are opportunities for Pareto-improving redistributions of students across 

classrooms and/or schools. We also find that peer effects tend to be much stronger at the 

classroom level than the grade level—in most cases we find no significant peer effects at the 

grade-within-school level. This last fact agrees with recent findings by Carrell et al. (2008) that 

peer effects estimates can differ greatly depending on the accuracy with which the 

econometrician identifies the set of relevant peers.  

II. Previous Literature 

Measurements of peer effects at the classroom level have been scarce as a result of data and 

methodological limitations. Administrative data from Texas identifies only the school and grade 

level and not specific classroom assignments; hence studies using these data have been limited to 

grade-level peer effects (Hanushek et al. 2003; Hoxby 2000). Vigdor and Nechyba (forthcoming) 

and Cooley (2007) both employ statewide data from North Carolina. However, because the 

North Carolina data do not directly identify the teacher assignments for middle school and high 

school student records, Vigdor and Nechyba estimate classroom-level peer effects on 5th-grade 

reading and math achievement test gains, and Cooley estimates classroom-level peer effects—

construed as effort spillovers rather than spillovers from fixed peer ability—on 4th and 5th grade 

reading achievement levels. Rather than employing fixed effects, Vigdor and Nechyba restrict 

the sample to classrooms satisfying an “apparent random assignment” condition. To isolate 

random variation in peer effort, Cooley exploits a change in school assessment policy that should 
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have increased the payoff to effort among lower-ability students. She includes teacher fixed 

effects and a proxy for unobserved reading ability, but does not include student fixed effects. In 

addition to estimating linear-in-means specifications, Cooley also uses quantile regression 

analysis to allow for differences in the impact of peers at different points of the achievement 

distribution.  

Hoxby and Weingarth (2005) estimate classroom peer effects for 4th through 8th grade 

students from Wake County in North Carolina, using the sum of math and reading end-of-year 

test score levels as the outcome measure. To measure classroom-peer effects, they exploit a 

recent policy intervention in which some students were reassigned to different schools in a 

manner that was purportedly random conditional on students’ fixed characteristics. They 

construct an instrumental variable for the lagged scores of current classroom peers using the 

initial-period scores and fixed characteristics of the randomly assigned segment of the current 

school-by-grade peer group. Student fixed effects and grade-level by year effects are accounted 

for, but school effects and teacher effects are omitted.1 Multiple specifications of peer effects are 

estimated, including standard linear-in-means models as well as models in which peer effects are 

allowed to vary with the student’s own ability and with the ability of the peers.  

Zabel (2008) uses data from New York City public schools that indicate classroom 

assignments but not teacher identifiers. Classroom peer effects are estimated for 4th and 5th grade 

standardized test scores (in levels), but only school-level fixed effects are used. To avoid bias 

from nonrandom classroom assignment within schools, he takes two approaches: in one case, 

classroom peer characteristics are instrumented by grade-within-school peer characteristics, and 

                                                 

1 Such omission need not imply failure of identification. As we discuss below, omission of teacher and/or 
school fixed effects does not universally result in inconsistent peer effects estimates.  

5 



in the second case tests are limited to schools with larger class sizes, within which there is less 

scope for classroom-level sorting.  

Betts and Zau (2004) estimate classroom-level effects on standardized test-score gains in 

San Diego, controlling for student fixed effects and for several observed teacher characteristics, 

but they do not employ teacher fixed effects. They also limit their tests to elementary school 

students, on the grounds that only elementary students spend most of their time in a single 

classroom and therefore, presumably, are more susceptible to the influence of classroom peers 

than are students who move across classrooms throughout the day.  

Figlio (2005) focuses on the effects of peer behavior on student outcomes. Employing 

data from a single large Florida school district, he estimates the impact of peer disruptive 

behavior on individual student behavior and test scores. He controls for student heterogeneity via 

student fixed effects, but does not include time-varying student covariates or teacher controls. He 

employs a novel identification strategy; the fraction of boys with female-sounding names in a 

classroom is used as an instrument for peer behavior. He finds that peer disruptive behavior is 

associated with both an increased likelihood that a student is suspended and a reduction in 

achievement test scores. 

The current study contributes to the existing stock of peer effects research by providing 

reliable identification of classroom teachers across a broad range of schooling levels, estimating 

multiple levels of fixed effects, capturing spillovers from unobserved peer ability, and estimating 

nonlinear models that reveal heterogeneous peer effects with important policy implications. In 

addition, we use a large, representative data set that has not previously been employed in the 

estimation of peer effects.  
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III. Empirical Model and Identification Method 

A. A Value-Added Model of Student Achievement 

We begin by specifying a version of a cumulative achievement function with linear-in-

means classroom-peer effects, as follows:2  

ittmjlktjtiktiktiitijklmttijklmijklmt CSTuXuAAA εθωδηββ +++++′+′+′++′=Δ=− −

rrrrrr
~2~1211, αXα  (1) 

Equation (1) is a restricted, “value-added” form of the cumulative achievement function 

specified by Boardman and Murnane (1979) and by Todd and Wolpin (2003),3 in which we relate 

the achievement gain, ijklmtAΔ , for individual i with teacher j in classroom k at school l in grade 

level m between time t-1 and time t, to the following inputs: a vector, itX
r

, of observed (fixed and 

time-varying) characteristics of individual i; a composite of fixed unobserved individual 

characteristics, , (such as the fixed portion of parental inputs and the student’s innate learning 

potential); the average, 

iu

iktX ~

r
, of the observed (fixed) characteristics of individual i's classroom 

peers at time t; the average, iktu~ , of the unobserved fixed characteristics of current classmates; 

the observed (time-varying) teacher characteristics, jtT
r

; class size in classroom k at time t, ; 

the effect of the fixed (observed and unobserved) characteristics of teacher j at school l, 

ktCS

jlδ ; the 

fixed effects, mω  and tθ  respectively, of being in grade level m and of the current calendar year 

t, and a time-varying individual disturbance, itε .  

                                                 

2 We discuss and estimate non-linear peer effects specifications below. 
3 The derivation of the linear education production function in equation (1) from a less restrictive model can be 

found in Todd and Wolpin (2003) and Sass (2006). 
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The cumulative achievement specification in equation (1) suits the nature of the outcome 

measure we observe, which is the Florida Comprehensive Assessment Test-Norm Referenced 

Test (FCAT-NRT). The test is “vertically scaled,” which means that gains from any initial value 

on the scale are intended to be fully comparable to each other.4 The model assumes that the 

cumulative achievement function does not vary with a student’s age, although we relax this 

assumption by estimating separate models for elementary, middle, and high school observations. 

The model also assumes that schooling inputs applied at any point in time have an immediate 

and permanent impact on cumulative achievement—in effect, prior learning does not decay or 

depreciate over time. As a result of these (admittedly strong) assumptions, once-lagged 

individual achievement serves as a sufficient statistic for all prior schooling inputs and it drops 

out of the right-hand side of the gain equation. If the no-decay assumption is relaxed, the once-

lagged individual score should enter the right-hand-side of the equation, in which case OLS 

estimation is inconsistent.5  

To facilitate estimation of simultaneous peer effects, additional assumptions are 

necessary. Assuming for now that  contains no time-varying factors, the fixed component of 

the individual gain score can be written as 

itX
r

iii u21 αXα +′=
rr

γ . If we assume, in addition, that the 

relationship between the marginal effect of any given mean peer characteristic is the same 

multiple of the marginal effect of the characteristic at the individual level, that is, letting 

                                                 

4 It has been argued that vertical scaling cannot guarantee true comparability of gains (nor of achievement 
levels) across grade levels (Schafer and Twing 2006). Our schooling-level-specific estimations assume only 
comparability of gains within a schooling level (e.g., elementary), not across all grade levels.  

5 Of course, if the lagged score ought to enter the gain equation but does not, OLS will be inconsistent due to 
omitted-variable bias. Most previous studies of peer effects using standardized test scores for elementary and middle 
school students adopt an equally restrictive specification of the cumulative achievement function. Betts and Zau 
(2004) relax the no-learning-decay assumption and include once-lagged achievement on the right-hand-side of the 
gain equation.   
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11 αλβ
rr

=  and 22 λαβ = , we can express the combined impact of average peer observed and 

unobserved characteristics as ikt~γλ , where ikt~γ  refers to the average fixed effect for each 

individual in i’s peer group at time t, other than herself. This assumption enables us to bundle all 

of the peer characteristics into a single regressor that represents the mean of the fixed (gain) 

effects of the individual’s current classroom peers. Time-varying individual characteristics can be 

added back into the model but these are not included in the peer variable. Incorporating these 

assumptions, the linear-in-means estimation model becomes:  

ittmjlktjtitiktiijklmttijklmijklmt CSTXAAA εμωδηαγλγ +++++′+′++=Δ=− −

rrrr
~1,  (2) 

In this model, the individual fixed effect represents a fixed achievement gain or amount 

of learning per period,.6 This idiosyncratic learning rate represents the per-period effect on 

cumulative achievement of the bundle of fixed factors associated with the student. Here we have 

in mind factors such as the student’s innate capacity for learning and the flow of familial 

monitoring and support. For shorthand we will refer to this effect as student “ability” or 

“quality.” To the extent that family inputs may vary over time, the deviations are embedded in itε  

and assumed to be random—specifically, mean zero and i.i.d.—conditional on the vector of 

regressors.7 However, we effectively allow for systematic variation in the contributions of 

                                                 

6 Some specifications of the value-added model assume that the innate ability endowment contributes only to 
initial achievement and not to ongoing gains, while the family input is modeled as a flow that contributes to gains. 
However, if there is student-level heterogeneity in gains and if family inputs and ability endowments are not 
observed it will be impossible to separate the contribution to achievement gains of these different factors. This 
specification requires only that the combination of student-level unobservables contribute a fixed amount to the 
expected achievement gain in each period.   

7 Evidence of systematic responses in parental inputs to changes in schooling inputs reveal mixed results.  
Bonesr∅nning (2004) finds that class size has a negative effect on parental effort in Norway, suggesting that school 
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unobserved student-level inputs across schooling levels by estimating separate models for 

elementary school, middle school, and high-school outcomes.  

B. Modeling and Measuring Peer Effects 

In light of evidence that teacher quality matters a great deal for student achievement and 

yet is not strongly linked to observed teacher characteristics (Rockoff 2004; Rivkin et al. 2005; 

Kane et al. 2006), and evidence that teacher assignments are nonrandom within schools (Oakes 

1990; Argys, Rees, and Brewer 1996; Vigdor and Nechyba forthcoming; Feng 2005; Clotfelter et 

al. 2006), controlling for unobserved teacher inputs would appear to be crucial when measuring 

classroom-level peer effects. While previous studies have accounted for by-student average 

teacher quality with student fixed effects, and in some cases for average teacher quality at the 

school-by-grade level, such controls are likely to be insufficient at the classroom level. For 

example, if matching of students to teachers with respect to fixed abilities is neither perfectly 

random nor perfectly deterministic, the average (fixed) ability of classroom peers in a given year 

will be a better predictor of teacher quality in that year than will be the individual’s own ability. 

If, for example, better teachers are matched on average with better students but there is within-

classroom variation in student ability, peer effects estimates will be biased upward when teacher 

inputs are omitted, even in a model with student fixed effects.8 Furthermore, observed teacher 

inputs, such as experience, will constitute inadequate controls if most of the variation in teacher 

effectiveness derives from unobserved factors.  

                                                                                                                                                             

and home inputs are complements. In contrast, Houtenville and Conway (forthcoming) find that parental effort is 
negatively correlated with school-level per pupil expenditures on instructional personnel, implying that school 
resources and parental effort are substitutes.  

8 We verify this using simulated data in which teacher ability is positively correlated with the classroom-
average ability of her students. 
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To control both for unobserved student heterogeneity and for unobserved teacher 

heterogeneity, we employ models with student fixed effects and teacher-school spell effects, plus 

grade and year controls. We identify peer effects using within-student variation in the 

distribution of classroom peer quality, isolating the portion of this variation that is not predicted 

by the teacher–school pair, the grade level, or the school year. This removes the possibility of 

confounding the effects of within-student peer variation with the effects of within-student teacher 

(or school, grade level, or year) variation. If teacher identity and peer inputs are perfectly 

collinear, peer and teacher effects are not separately identified. In such cases our method—which 

de-means outcomes with respect to the teacher—will yield no identifying variation in the peer 

variable and therefore will detect no peer effects. Our results indicate that collinearity between 

the teacher and peer variables is not strong enough to undermine the identification.  

Peer effects in our specification represent spillovers from the current peer group’s 

average fixed (gain) effect, which we take as a proxy for average “ability” or “quality” among the 

peer group. In the linear specification, and assuming the coefficient λ  in equation (2) is strictly 

positive, the model says that the greater the average innate learning rate of one’s current 

classroom peers, the greater the individual’s achievement gain in the current period, all else 

equal. The supposition underlying this model is that innate characteristics, aptitudes, motivation 

levels, and fixed habits, as manifested in students’ idiosyncratic learning rates, constitute the 

main channels by which school peers influence each others’ outcomes. For example, students 

may learn directly from peers based on their high aptitude levels and knowledge of a subject; 

they may benefit from having well-behaved peers who create a classroom atmosphere that is 

conducive to learning, or they may free-ride on classmates’ questions or superior note-taking 

skills.  
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While much of the previous literature takes a similar view, emphasizing spillovers from 

permanent peer ability rather than from transient, simultaneously determined behavior or 

outcomes, most of the existing studies measure peer ability on the basis of lagged test scores or 

various instruments for (current or lagged) test scores, measures that are likely to capture true 

peer quality with considerable error. 9 Such measurement error will result in downward biases on 

the estimated peer effects, ignoring other sources of bias. By contrast, our individual fixed effects 

capture the contribution of both observed and unobserved factors to the idiosyncratic learning 

rate. A peer variable based on these fixed effects is likely to offer a more accurate gauge of the 

permanent component of peer ability or quality and so reduce the potential for measurement 

error bias.  

Another advantage of using peer fixed effects is that we avoid the risk of bias caused by 

regression to the mean, a bias that may affect coefficient estimates on lagged mean peer test 

scores when the student’s own lagged score is omitted from the regression.10 Because our peer 

variable represents an average of time-invariant quantities, it does not manifest any one-time 

shocks to peers’ outcomes and will not be subject to this source of bias. 

One potential disadvantage of the peer fixed effects is that, because we bundle observed 

and unobserved characteristics into a fixed peer effect, we will be unable to isolate the effects of 

race, gender and other fixed observed characteristics. However, recent evidence (Hoxby and 

Weingarth 2005; Cooley 2007) suggests that race and gender effects serve mainly as proxies for 

                                                 

9 One exception is Cooley (2007), who emphasizes endogenous effects and uses a control function approach 
with an exogenous utility shifter in order to avoid simultaneity bias.  

10 As Betts and Zau (2004) explain, if the members of a student’s peer group don’t change much over time, 
regression to the mean will cause the individual’s current test-score gain to be negatively correlated with her own 
lagged score as well as with the lagged score of her current peer group; if the student’s lagged score is omitted, the 
estimated coefficient on the lagged mean peer score will be biased downward. 
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ability, indicating that policy should focus on finding the optimal ability mix rather than the 

optimal racial mix.  

In addition to learning externalities operating through fixed peer characteristics— termed 

“exogenous effects” in the social interactions literature—there may be spillovers of voluntary 

behavior across students or “endogenous effects.” For example, behaviors may be (at least 

temporarily) contagious in that a student may adjust her effort level upward in the current period 

when surrounded by peers with high effort levels. We do not, as in Cooley (2007), model an 

achievement function in which students choose effort levels simultaneously with a preference for 

conformity. However, we cannot rule out the possibility that fixed peer characteristics will 

appear to matter because they proxy for contagious behaviors, such as good study habits or 

attentiveness in class, and not (only) because peer conduct yields direct benefits. If we (rightly) 

want to attribute such endogenous effects to peer influence, we can view the empirical 

cumulative achievement function as a reduced form equation in which the peer variable captures 

the effect of innovations to individual inputs caused by the peer influence together with any 

“passive” peer effects. However, because fixed characteristics measure current effort with error, 

the endogenous-effects component of the coefficient (if positive in fact) will be biased 

downward. The positive tradeoff is that we don’t face simultaneity bias, a risk that arises when 

using current or lagged peer test scores to proxy for effort or ability.  

We think that spillover effects from peers’ current outcomes (test scores) are in the 

current context unlikely: even if a student were to seek to match her own gain-score to the mean 

peer gain-score, observing the gain-score to target would be difficult because the outcomes we 

observe are achieved simultaneously in a single testing event per year, and because students 

would have to observe peers’ past scores as well in order to calculate gains. (Conformity effects 
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on test score levels in each time period could induce some conformity effects on test score gains 

but only imperfectly and the same basic critique applies.) However, as in the case of effort 

spillovers, we can’t reject the possibility that endogenous effects of test scores are bundled with 

exogenous effects of peer quality: for example, a student may achieve more when surrounded by 

“better” peers because she learns from them, and/or because better peers have better outcomes 

and she wishes to match those outcomes.  

For illustrative purposes, we have described a model in which peer effects operate 

linearly through average peer characteristics. Although the linear-in-means model has been the 

most common specification in the education peer effects literature, recent evidence suggests that 

the model is misspecified, leading to biased estimates (Hoxby and Weingarth 2005). This is an 

important development, because only if peer effects are nonlinear can policy interventions result 

in global welfare (achievement) gains—in the linear-in-means setting, policy effects are all zero-

sum. In light of this evidence, we estimate two nonlinear specifications. In the first, the influence 

of the mean peer effect is allowed to depend on a quintile ranking—lowest 20, middle 60, 

highest 20 percent—of the individual student’s ability (based on her fixed effect) relative to the 

entire estimation sample. In the second, students are affected by the proportion of classroom 

peers in each ranking group (e.g., the higher the percentage of high-ranking peers, the greater 

one’s current gains) and these effects in turn may depend on the student’s own rank. For 

example, low-ability students may benefit more from an increase in the proportion of high-

ranked peers than would high-ability students. Again, all peer variables are based on the peer 

fixed effects rather than noisier measures of peer ability. Consistent with previous work in this 

direction, we find that nonlinear models indicate a rich set of peer effects that cannot be detected 

in linear-in-means estimation.  
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C. Controlling for Nonrandom Selection into Peer Groups 

So far we have addressed concerns about measurement error of peer quality, bundling of 

endogenous and exogenous effects, simultaneity of outcomes, mean reversion, and model 

misspecification. A more basic concern entails the endogeneity of the classroom peer group. 

With nonrandom peer selection there is concern for whether peer influences of any sort can be 

distinguished from spurious or correlated effects. Correlated effects arise if individuals in a 

group are more similar to each other, on average, than to individuals outside the group, or if the 

group is exposed to a common influence that varies across groups. The constant component of 

selection is taken care of with individual student fixed effects; identification uses only within-

student variation in peer group quality. However, we must also take care that variation in the 

peer group does not proxy for variation in another relevant factor such as the grade level, the 

time period, the school, or the teacher.11  

Referring to equation (2), recall that jlδ  is the fixed effect of a given teacher-school 

combination. The teacher-school “spell” fixed effect allows the combined effect to be 

nonadditive—for example, some teachers may make more efficient use of a school’s resources 

than others or the same teacher may perform differently at different schools.12 Assume that jlδ  is 

non-zero conditional on  and has a non-zero variance both within and across schools. If, on 

average, higher ability students are matched with higher quality teachers and yet there is some 

jtT
r

                                                 

11 In models involving endogenous effects, an omitted correlated effect can bias estimation even under perfect 
random assignment because the correlated factor promotes similarity of outcomes within groups regardless of how 
the peer group is selected. 

12 The implementation of the spell effects is described in Section III. As explicated in Andrews et al. (2006), 
the method does not separately identify school and teacher contributions to achievement gains. However, we also 
estimate models with student and school fixed effects only (rather than student and teacher-school effects) to isolate 
the impact of the teacher controls on the peer effects estimates.  
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randomness in teacher assignments, then mean peer ability, ikt~γ , will be correlated with the 

teacher-school input, jlδ , even after conditioning on individual ability, and measured peer effects 

will be biased upward when teacher quality is not controlled for.13  

Another concern is that students may be assigned to teachers on the basis of prior shocks 

to the achievement level that are observed by the school principal but not by the econometrician. 

If assignments are made on this basis and if shocks to individual gains are serially correlated, 

teacher quality will be correlated with the error term and estimated teacher effects will be biased. 

Rothstein (2008) produces evidence of such dynamic sorting for a single cohort of elementary 

students in North Carolina. He finds that future teachers appear to influence current student 

achievement gains. However, dynamic student-teacher matching of this sort does not induce any 

particular correlation between the current error term and our peer variable, because by 

construction the errors are orthogonal to fixed ability. The students in a given classroom will 

have similar lagged errors and, with serial correlation, similar current errors, but not—in 

expectation—similar fixed abilities. In such a setting, the peer variable and the teacher variable 

no longer co-vary, and omission of teacher effects will not introduce bias in the estimates of peer 

effects. However, if teacher inputs matter, the precision of peer effects estimates may be reduced 

considerably when teacher controls are omitted. We have verified these statements by running 

regressions on simulated data with the appropriate correlation properties.  

                                                 

13Evidence suggests that good teachers get “plum” assignments within a school, and this is consistent with our 
empirical findings. If there is perfect sorting (that is, a fixed, one-to-one map from student type to teacher type), 
there is no within-student variation in peer quality nor in teacher quality, and student fixed effects will sweep out 
both teacher and peer effects. If students are perfectly randomly assigned, teacher type will vary within a student but 
this variation will be orthogonal to variation in the peer group.   
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Even with no unobserved heterogeneity in teacher inputs, including teacher fixed effects 

may assist the estimation. A common identifying assumption in the literature is that variation in 

unobserved student/family inputs over time must be orthogonal to variation in peer group 

quality. For example, if parents at some point decide to exert greater effort to help their child 

achieve, they might try to secure a better peer group relative to the previous year, in addition to 

spending more time helping the student complete homework assignments. Alternatively, parents 

could adjust inputs—in either direction—in response to observing an improvement in the child’s 

peer group quality.14 In either case, the peer variable will proxy for unobserved parental inputs 

and peer effects may be biased in either direction. Teacher controls will mitigate the problem if 

teacher identity serves as a better proxy for the unobserved input than does the peer variable. 

Since parents are likely to have greater control over their child’s teacher than over the specific 

classmates she gets, then even if parents choose teachers merely as a proxy for the peer group, 

this better-proxy condition may hold. If teacher heterogeneity matters, however, teacher effects 

are not a suitable proxy variable and peer effects estimation with teacher effects may be 

inconsistent. By estimating models both with and without controls for unobserved teacher 

heterogeneity (the alternative model still controls for school-level effects), we can analyze results 

in light of alternative assumptions about the role of teachers.  

   

                                                 

14 However, if parents exert extra effort in order to help their child “keep up with the Joneses,” this could get 
classified as a type of peer effect-by-proxy.  
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IV. Data, Sample Selection and Computational Issues 
 

A. Data 

In the present study we make use of a unique panel data set of school administrative records 

from Florida.15 The data cover five school years, 1999/00 through 2003/04, and include all 

public-school students in the state of Florida. Achievement test scores are available for both 

math and reading in each of grades 3–10, for each of two different achievement tests. One of 

these tests is the “Sunshine State Standards” Florida Comprehensive Achievement Test (FCAT-

SSS), a criterion-based exam designed to test for the skills that students are expected to master at 

each grade level. The other test is the FCAT Norm-Referenced Test (FCAT-NRT), a version of 

the Stanford-9 achievement test used throughout the country. We use the FCAT-NRT scores and 

not the FCAT-SSS scores because only the former are readily comparable across grade levels 

and students: the FCAT-NRT (like the Stanford-9) scores are “vertically” scaled, such that a one-

point increase from one place on the scale should, in theory, represent an equivalent achievement 

gain to a one-point increase from anywhere else on the scale. 

B. Sample Selection 

To permit a flexible education production function, we divide the sample into three groups: (1) 

elementary school observations, used to estimate the model of test score gains for the 4th and 5th 

grades; (2) middle school data, used to estimate the model for the 6th, 7th, and 8th grades; and 

(3) high school data, used to estimate the model for the 9th and 10th grades.16 The drawback of 

estimating separate models is that we limit the number of gain-score observations per student to 

                                                 

15 A more detailed description of the data is provided in Sass (2006). 
16 Note that 5th grade scores are used to calculate 6th grade gain-scores, and similarly for 8th grade scores and 

9th grade gains. 
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two in the cases of elementary and high school, and to three per student for middle school.17 In a 

small number of cases, students are observed more than twice (or, for middle school, more than 

three times) because they repeated a grade one or more times.18 Within each level of schooling, 

we observe four cohorts, covering the four academic years beginning with 2000/01 and ending 

with 2003/04. Descriptive statistics within each schooling-level sample are given in table 1.  

In addition to linking students and teachers to specific classrooms, our data indicate the 

(average) proportion of time each student spends in each classroom. Although primary school 

students typically receive academic instruction from a single teacher in a “self-contained” 

classroom, this is far from universal. During the periods we observe, in addition to being enrolled 

in a self-contained class, five percent of elementary school students were enrolled in a separate 

math course, four percent in a separate reading course, four percent in a separate language arts 

course, and nearly 13 percent in either a gifted-student or special-education course. We restrict 

our analysis to students who receive instruction in the relevant subject area (math or 

reading/language arts) in just a single classroom. At the elementary level, this means that we 

exclude students enrolled in separate math or reading classes, even if they spend most of their 

time in the all-purpose classroom. We also exclude elementary students who spend less than one 

hour per day in the all-purpose class, even if not enrolled in a separate math or reading class—for 

                                                 

17Since we are not differencing out student effects, our estimation method will assign fixed effects to students 
with just a single gain observation (“singletons”); the fixed effect just equals the gain score and the student 
contributes no identifying variation. In the following analysis we omit such singleton students. While it may seem 
innocuous to omit these observations, in doing so we also omit them from the peer groups of others. If, for example, 
the omitted students exert less influence on their peers than do the included students, our peer effects estimates will 
be biased upwards. On the other hand, including such observations puts downward pressure on estimated peer 
effects, because among such students any peer influences will be incorrectly attributed to the individual effect. We 
have run most of the models including singletons, and the peer effects are generally smaller, indicating that the latter 
bias likely dominates. 

18Our estimation models include repeater-by-grade indicators to allow for differential achievement gains of 
students who repeat a grade. 
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example, students who spend most of their time in the special-education classroom. These 

exclusions allow us to avoid the problem of determining the proper math or reading peer group, 

and the proper teacher, for students with nonconventional schedules. 19  

At the middle and high-school levels, we drop students enrolled in more than one course 

in the subject area pertaining to the given test score (math or reading/language arts). To avoid 

atypical classroom settings and jointly taught classes, we consider only courses with 10–50 

students and with only one “primary instructor” of record. Finally, we eliminate charter schools 

from the analysis since they may have different curricular emphases, and because student-peer 

and student-teacher interactions may differ in fundamental ways from those in traditional public 

schools. 

Previous work (Bifulco and Ladd 2006; Sass 2006; and others) has shown that student 

performance suffers in the first year following a move to a new school. In light of this evidence, 

we include three measures of student mobility among the set of regressors: the number of 

schools attended in the current year, and indicators of “structural” and “nonstructural” moves by 

the student. A structural move is defined as a move in which at least 30 percent of a student’s 

cohort in the same grade at the initial school makes the same move. This variable captures the 

effects of normal transitions from elementary to middle school and from middle to high school, 

as well as the impact of significant school rezonings. Correspondingly, a nonstructural move is 

defined as any change in school attendance between the end of the preceding school year and the 

current school year that does not satisfy the structural-move condition. This variable captures the 

                                                 

19 Previous studies lack data on students’ complete course enrollments and so cannot exclude on such detailed 
criteria. Hanushek et al. (2003), remove special-education students altogether, while other studies include all 
students regardless of special-education or multiple-course status.  
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impact of moves due to events such as family relocations and parents exercising school choice 

options. 

Time-varying teacher attributes are captured by a set of three dummy variables 

representing varying experience levels: zero years of experience (first-year teachers), one year of 

experience, and two to four years of experience. Teachers with five or more years of experience 

are the omitted category.20 In addition to the time-varying teacher and student factors, all of the 

remaining regressors represent fixed effects, which are either estimated directly or accounted for 

using de-meaned variables, as explained below. 

C. Computational Issues 

Estimation of the achievement function in (2) is computationally challenging since it 

includes multiple levels of fixed effects. Combining teacher and school effects into teacher-

school spell effects simplifies the estimation considerably, but even with this simplification we 

must estimate fixed effects for over 200,000 students, plus two or three grade levels and four 

calendar years within each schooling-level model. Standard fixed effects methods eliminate one 

effect by de-meaning the data with respect to the variable of interest. Additional effects must 

then be explicitly modeled with dummy variable regressors. After de-meaning the data by the 

teacher-school combination, we would be faced with simultaneous estimation of more than 

200,000 dummy variables, on average, in any given model.  

  

                                                 

20 Most longitudinal studies of student achievement find that the marginal effect of additional teacher 
experience approaches zero after five years of experience. See, for example, Rockoff (2004), Rivkin et al. (2005), 
Kane et al. (2006). 
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To estimate the multiple levels of fixed effects, we adopt an extension of the iterative fixed 

effects estimator recently proposed by Arcidiacono, et al (2005). Taking deviations from the 

teacher-school spell means, the achievement equation becomes: 

itjlt
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εμμ
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where jkγ  refers to the mean fixed effect of all students (including student i) encountered in the 

set of observations involving teacher j at school l—call this set of observations “group jl”;21 jlX  

denotes the mean (vector) of the time-varying student characteristics within group jl;22 jlT  

denotes the mean of the teacher experience dummy vector across group jl—all observations 

contributing to jlT  pertain to the same teacher and the mean is automatically weighted by the 

proportion of students taught at each level of experience; jlω  and jlμ  denote the group jl means 

of the grade level and calendar year dummies, respectively. We assume that the error terms 

within each group jl average out to zero. Subtracting the de-meaned individual effect from both 

sides and collecting terms yields: 

 
itjltjlmjljtjlitjliktijlijklmt TTXXAA εμμωωηαγδγλγ +−+−+−′+−′++=−Δ−Δ )()()()(~

rrrr  (5) 

In the above, )1( λδ −−≡ . Note that if it~γ  equals jkγ  for a given observation—i.e. if the 

current average peer type equals the average student type for the teacher-school affiliation—the 

observation contributes no identifying variation. If this is true universally in the data, the teacher 

                                                 

21 It is useful to refer to this as a group of observations rather than a group of students, in order to avoid 
confusion in the calculation of group-level means.  

22 Students observed in multiple time periods with the same teacher-school group enter as two different 
observations and, in such cases, varying values of the time-varying characteristics for a single student enter the 
calculation of the group mean.  
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indicator and the peer variable are perfectly collinear and the peer effects and teacher effects are 

not identified. Using the teacher/school-demeaning method, estimated peer effects will be zero 

because peer effects will be swept out with the teacher/school-group mean outcome. Such 

extreme sorting is empirically unlikely, however, and under such conditions our method will 

yield conservative estimates of peer effects.23   

Equation (5) is estimated by ordinary least squares (OLS), using initial guesses for the 

individual fixed effects, iγ  and jkγ . This produces coefficient estimates which are then used to 

calculate predicted outcomes and corresponding residuals for each individual. The individual 

fixed effects estimates are then updated by taking the mean residual for each individual. The 

parameters are re-estimated using the updated fixed effects, and the process is iterated until the 

coefficient estimates converge. Standard errors are obtained by bootstrapping.  

This method yields results that are only approximately correct, however, because the 

updating of fixed effects based on the mean residuals is an approximation of the value of the 

fixed effect that minimizes the sum of squared errors within each iteration. Arcidiacono et al. 

(2007) provide an exact solution, but we are unable to estimate the mathematically exact model 

successfully with the Florida data.24 We can, however, estimate the model under both methods 

using simulated data. In doing so we find that both methods produce fairly precise estimates 

                                                 

23 Furthermore, the mean peer variable will also be perfectly collinear with the student dummy, because the only 
way to achieve equality between it~γ  and jkγ  is to have perfectly homogeneous classrooms. If teacher effects are 
omitted, collinearity between the individual effects and the peer variables remains, and peer effects are still not 
identified. 

24 The value of a student’s fixed effect influences the residuals among her own observations and the residuals 
for all observations in which she is a member of the peer group. The approximate method sets the value of a given 
individual’s fixed effect taking into account the impact on the residuals of the observations for that individual alone, 
while the exact method also factors in the impact on the residuals of the observations in which the individual enters 
the peer group. The difference across the methods in the estimated fixed effects, and therefore in the estimated peer 
effects, will be greater the stronger are peer effects and the smaller is the average class size. 
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which are close to the true parameter value under a broad range of conditions. As demonstrated 

in the Appendix, only when sorting into classrooms on student ability is very strong does the 

approximate method produce estimates that are significantly different than those obtained with 

the exact method. As sorting gets either very strong or very weak, adding more noise to the data 

tends to result in biased estimates regardless of the method used. 

In the Florida data we find that classroom-level sorting on student ability (measured by 

the ratio of average classroom variance in estimated student fixed effects to the variance in 

estimated student fixed effects across all students) is moderate to low, lying in the range of 0.5 to 

0.8 (a value of 1.0 indicates no sorting). For these levels of student sorting, our simulation results 

indicate that the approximate method produces peer effect estimates that are close in magnitude 

and never statistically significantly different from those produced by the exact method. Given the 

moderate amount of sorting in the data, the results are quite robust to noise.   

Based on the evidence from our data simulation exercise, we are confident that our 

results would not be improved significantly using the exact method. Furthermore, when we 

observe biases in the results on the simulated data, the approximate method tends to 

underestimate true peer effects whereas the exact method sometimes overestimates peer 

effects.25 Thus our estimates of peer effects will be conservative. 

                                                 

25 It can be shown that the bias under the approximate method relative to the exact method is increasing in the 
true magnitude of peer effects. For this reason we applied a relatively large peer effect in our simulations. The 
chosen coefficient on mean peer ability was 0.15, which is greater than most empirical estimates of linear-in-means 
coefficients and three times as great as the estimate we get in the Florida data using the approximate method. 
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V. Results 

A. Mean Peer Effects 

We first discuss results under linear-in-means specifications, in which the peer variable is the 

mean ``ability” (as measured by our fixed effects) of current (classroom or grade-level) peers, 

not including the student herself. Table 2 reports coefficient estimates for the covariates of 

interest under our preferred model specification, in which we account for multiple levels of fixed 

effects, including teacher-school spell effects. We find positive and highly significant peer 

effects within every level of schooling and for both reading and math. The magnitude of this 

effect, however, is generally quite small: for elementary school mathematics, for every one-point 

increase in the mean peer fixed effect the individual experiences an increase of .044 points in her 

current gain score. Evaluated at the representative peer group within this sample (with a mean 

fixed effect of .877), the realized effect would be .0386 points. This is equivalent to 0.0015 of a 

standard deviation in the achievement gain or about one-fourth the impact of reducing class size 

by one student. The coefficient is smallest, at .015, for elementary reading, and greatest, at .069, 

for middle-school reading. Counter to a standard presumption in the literature, effects are not 

systematically smaller in middle school or high school than elementary school, despite the fact 

that students experience multiple peer groups during the day in the higher grades. We suspect 

this finding relies on an accurate identification of classroom peers for the given subject.  

Notice that the signs on most of the time-varying regressors are as we would expect: 

achievement gains decline with the number of schools attended in a year (but results are 

significant only for high school math and elementary school reading). Nonstructural moves 

between years are associated with greater achievement gains, perhaps because of parental self-

selection into optimal learning environments for their children. Larger class size has a uniformly 
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negative impact on outcomes, and the effect is significant in elementary school for both math and 

reading, and for middle-school reading. Notice also that within-teacher variation in experience 

has little significant effect on outcomes, consistent with findings of Rivkin et al. (2005) and 

Harris and Sass (2008). 

Table 3 gives results for a model that is similar to that reported in table 2, but in which 

data from elementary and middle school are pooled and in which we restrict the minimum 

observations per student to three. For math achievement, the estimated peer effect agrees 

strongly with the effects estimated under the separate elementary and middle-school models, 

which also closely resemble each other. The remaining coefficient estimates are qualitatively 

similar, in terms of direction and significance, between the combined model and the separate 

models, with the exception of the effect of number of schools attended during the year, which 

becomes negative and significant in the pooled model. This latter result may simply reflect 

greater variation in the number of schools attended per year when students are observed over a 

longer time period. For reading achievement the peer effect becomes very small and 

insignificant, although the remaining effects appear qualitatively robust.  

Table 4 shows how different model specifications influence the peer effects estimates.26 

The peer effects coefficients in the first row correspond to those reported in table 2, from our 

preferred specification. The coefficients in the second row come from a model in which we do 

not control for unobserved teacher effects; we use school fixed effects rather than teacher-school 

spell effects, but the models are otherwise identical. The third row reports estimated peer effects 

when the peer group is defined as all others in the same grade level (within the same school and 

                                                 

26Unless otherwise specified, all models reported in this table include the same set of controls as the baseline 
model presented in Table 2. 
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year), but where the specification is otherwise identical to the preferred one. (In this case we 

need only control for average teacher quality at the school-by-grade level, doing so through the 

combination of school level and grade level fixed effects.)  

The first pattern to note is that estimated peer effects are generally larger and less precise 

in the absence of controls for unobserved teacher inputs. Considering the middle-school math 

results, the estimated peer effect without the teacher controls, 0.228, is more than 5 times the size 

of the estimated effect with the controls. For elementary math, the point estimate is also greater 

when teacher controls are omitted, but the coefficient is not significant in that case. For reading 

achievement, the differences are less stark, but at the elementary level the estimated peer effect is 

significantly greater when teacher controls are omitted. The results suggest that there may be a 

significant positive correlation between peer ability and teacher quality, even after controlling for 

individual ability, and that such a correlation could distort estimates of peer effects in non-

experimental data when unobserved teacher inputs are not taken into account.  

The second important finding is that linear-in-means peer effects among grade-level-at-

school peers are always insignificant, with point estimates close to zero. Taking these results at 

face value, a natural interpretation is that the classroom setting facilitates learning spillovers in a 

way that non-classroom interactions do not. Taking a skeptical view, however, one might argue 

that we are also more likely to find spurious peer effects at the classroom level than at the grade 

level due to classroom-level sorting. In the discussion below we consider potential sources of 

residual bias and whether these might be stronger at the classroom level than the grade-within-

school level. 
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B. Nonlinear Peer Effects 

As a first step in relaxing the linear-in-means specification, we allow the peer effect to depend on 

the mean and the standard deviation of peer ability, again measured by fixed effects estimated 

within the model. As seen in table 5, greater dispersion in peer ability is associated with a 

significant, negative effect on math achievement gains for both middle school and high school 

students. Otherwise, no significant effects of the standard deviation are found. One interpretation 

of these results would be that it is difficult to effectively teach student groups with diverse math 

ability (although not so for diverse verbal ability). The effects of mean peer ability in the current 

model are largely similar to those obtained from the linear-in-means model. Where the 

dispersion effects are significant, the results imply that imposing a mean-preserving spread of 

classroom ability will reduce average classroom achievement gains.  

While we find no significant impact of ability variance at the elementary level, Vigdor 

and Nechyba found that ability dispersion had a positive impact on test scores (in levels) among 

5th graders in their North Carolina sample. However, Duflo et al. (2008) found that, among 

students in Kenyan primary schools randomly assigned to institute a tracking policy, test score 

gains on a combined math/literacy exam were greater than they were among students in the 

untreated control group of schools, though only the math score results were individually 

significant at conventional levels. In the same experiment, however, they found no spillover 

effects of mean peer ability. Being the best student in a class of relatively low-achieving students 

or being the worst student among a class of relatively high-ability students made no difference. 

Duflo et al. argue their results imply that students benefit from classroom homogeneity because 

the teacher can better tailor her instruction to students’ needs. 
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In the second nonlinear specification, we allow peer effects to depend on the student’s 

own ability—defined by the ranking of her fixed effect within the sample population.27 For a 

given distribution of student fixed effects within the sample, a student is designated as a “low” 

type if her fixed effect falls within the bottom quintile of the population distribution, as a 

“middle” type if her effect lies between the 20th and 80th percentiles, and as a “high” type if she 

falls in the top quintile. (The iterative model updates the rankings each time the fixed effects 

values are updated.) We therefore include three peer variables: “Lowest Ability Quintile × Mean 

Peer FE,” “Middle 3 Ability Quintiles × Mean Peer FE,” and “Highest Ability Quintile × Mean 

Peer FE,” where the type variables are binary indicators. As in the linear-in-means model, 

identification of the peer effects relies on variation in peer quality within a student over time as 

well as on variation in the student quality distribution across different sections taught by the 

same teacher.28 

Table 6 reports the type-specific peer effect coefficients for each of the six subject-by-

schooling level models. Among the elementary-level results, all effects are highly significant 

except those pertaining to reading outcomes among high-ranked students, and the significant 

effects are all much larger than the estimated effects from the linear-in-means models. These 

results imply that the average treatment effect (for either math or reading, taken across student 

ranks) is significantly greater than that estimated under the corresponding linear-in-means 

specification. This discrepancy is made possible by the fact that individual fixed effects, as well 

                                                 

27 Due to the computational costs of estimating the non-linear models, we estimate only our preferred 
specification (including teacher effects, no singleton students, classroom level effects). We assume that the impact 
of changes in specification would be similar qualitatively to the impact on the results in the linear models. 

28 The mean value by teacher of a given peer variable—for example, “Lowest Ability Quintile × Mean Peer FE” 
is the average value of the mean peer fixed effect variable among all low-type students taught by the given teacher, 
weighted by the proportion of all of the teacher’s students that were low types. Recall that teacher groups are 
specific to a single school.   
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as the peer variables, are estimated anew within the context of each specific model. The linear-

in-means model, by disallowing type-specific effects, likely attributes a greater portion of the 

outcome variation to individual effects as opposed to peer effects, since the (omitted) interaction 

variables are correlated with individual type.  

The elementary school results also indicate that the lowest-ranked students appear to 

receive the greatest benefits from having higher-quality peers, but middle-ranked students also 

receive sizable benefits. For example, low-ranked elementary students will experience a .82 

point (0.03 standard deviation) boost to their math gain score for every 1 point increase in the 

mean peer fixed-effect variable, whereas high-ranked students will receive only a .10 point 

increase in the math gain score under the same marginal treatment. These results provide a strong 

argument in favor of distributing top students relatively evenly across classrooms at the 

elementary level rather than isolating them from other students. Put differently, if the objective is 

to maximize total learning gains it would appear preferable to have evenly mixed groups rather 

than ability-tracked groups.  

At the middle school level, estimated treatment effects are smaller than at the elementary 

level, but again the average treatment effects are larger than those estimated under the linear 

models. Results do not differ much between reading and math—in both cases, middle-ability 

students experience the greatest benefits from a peer quality improvement. Based just on the 

point estimates, the highest-ranked students appear to experience larger peer effects than the 

lowest-ranked students, and effects on math scores for low-ranked students are only marginally 

significant (the p-value is 0.109). The findings argue for moving the best students to “middling” 

classrooms rather than to the weakest classrooms, and also argue against strict tracking.  

30 



At the high school level, there are fewer significant effects but the point estimates are 

close to those for middle school in most cases. As in the middle school results, effects are 

strongest for middle-ranked students. Unlike middle school, however, the estimates suggest a 

negative effect on the best math students of having higher-quality peers; results are weakest for 

high-school reading, with no significant effects found for either low- or high-ranking types. 

Unlike the linear-in-means case, we find an attenuation of the rank-specific peer effects between 

elementary school and the upper grades. If we put more faith in the nonlinear model than the 

linear model, we should conclude that the stakes for classroom peer assignments are greater in 

elementary school than in either middle school or high school, although they are not insignificant 

for the latter cases.  

The two other existing studies that allow for nonlinear peer interactions at the classroom 

level, Cooley (2007) and Hoxby and Weingarth (2005) also find for elementary school students 

that low and middle ability students benefit more from an improvement in peer quality than do 

higher-ability students. However, Hanushek et al. (2003), using school-by-grade level data did 

not find many significant differences in measured peer effects across the achievement 

distribution.  

To allow for an even more complex set of peer influences, we estimate a two-way 

interaction model, similar to that of Hoxby and Weingarth (2005). In this model, each student 

type (low-rank or bottom 20 percent of the sample-wide fixed effects distribution, mid-rank or 

middle 3/5th, high-rank or top 20 percent) is subject to peer effects from three different moments 

of the peer distribution: the proportions of low-ranked, mid-ranked, and top-ranked peers. To 

estimate these effects, we construct six peer variables, each the product of a binary type indicator 

and the proportion of peers of a given rank: for example, “Individual in Lowest Quintile 
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× Fraction of Peers in Lowest Quintile,” “Individual in Lowest Quintile × Fraction of Peers in 

Highest Quintile,” and similarly for mid-ranked and high-ranked individuals. Due to collinearity 

of the proportions within any student observation, we omit the effect of the proportion of mid-

ranked peers on each individual type. Therefore, the marginal effect (on a given individual type) 

of an increase in the proportion of high-ranked peers (alternatively, low-ranked peers) represents 

the net effect of increasing the high-ranked (low-ranked) proportion and reducing the mid-ranked 

proportion, since the low-ranked (high-ranked) proportion and class size are being held constant.  

As seen in table 7, all of the effects are highly significant and many are of a large 

magnitude. Consider, for example, the effect of the fraction of lowest-ability-quintile peers on 

lowest-ability-quintile individuals for elementary-school math scores. The coefficient estimate 

means that an (additive) increase of one-tenth of a unit in the fraction of lowest-quintile peers 

(and a corresponding decrease in the fraction of peers in the middle three quintiles) will raise the 

math test-score gain of the lowest-ability students by approximately 2 points (0.08 of a standard 

deviation in achievement gains). While this result seems to point in favor of ability tracking, low 

ability students get an even greater boost from an increase in the fraction of peers in the top 

ability quintile. Across schooling levels and disciplines, low ability students benefit about twice 

as much from an increase in the share of top-quality peers as they do from an increase in the 

share of low ability peers. Effects are strongest at the elementary level, for both math and reading 

achievement, but effects are not weaker in high school than they are in middle school. Such 

students apparently perform less well the greater the share of middling students they are grouped 

with.  

Students in the middle three quintiles benefit from having a higher share of high ability 

peers but suffer losses as the share of low ability peers increases. In most cases these respective 

32 



gains and losses are of roughly equal magnitude, although in a few cases the gains appear 

slightly smaller. In high school math, for example, middle-ability students would prefer to 

replace a low-ability student with a middle-ability student than to replace a middle-ability 

student with a high-ability student. Of course, replacing a low-ability student with a high-ability 

student would dominate either of these options. As in the case of the lowest-ability students, 

effects are strongest at the elementary level, but roughly equal between middle school and high 

school.  

Students in the highest ability quintile appear to benefit most from having peers of middle 

ability rather than peers of either high ability or low ability, but the losses are greatest as the 

share of low ability peers increases. Again the effects are greatest at the elementary school level, 

although at the high school level we observe a relatively large negative impact on math 

achievement gains as high ability students get more low-ability peers.  

C. Policy experiments  

Table 8 shows the impact of three different classroom assignment experiments. In each case, the 

initial classroom ability distribution is assumed to be representative of the aggregate rankings, 

with 20 percent of students in the lowest-ability quintile, 60 percent in the middle three quintiles, 

and 20 percent in the highest quintile. In the first reassignment, the class becomes heavily 

weighted toward low ability students, and the new respective shares are 60 percent, 30 percent, 

and 10 percent. The table shows the impact on the students remaining in the same classroom, by 

ability level. The lowest-ability students are made better off, but these gains are more than offset 

by the losses to middle and high ability students. In the second experiment, the class becomes 

dominated by high ability students, with respective shares of 10, 30, and 60 percent. In this case, 

low ability students benefit by a large margin, middle ability students benefit modestly, and high 
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ability students are made somewhat worse off. In the third experiment the distribution becomes 

shifted toward the middle, with only 5 percent each in the lowest and highest ability quintiles. 

The net effects are all close to zero, although they are positive in some cases and negative in 

others.  

These results do not represent general equilibrium effects—that is, they do not consider 

the impact on the students who were “exported” from a given classroom. In addition, students 

imported from other classrooms would experience different impacts if their initial assignment 

differed from the initial assignment assumed in the experiment. While it appears that net benefits 

accrue in the second experiment, not all low- and middle- ability students can be assigned to 

classrooms dominated by high ability students. 

In table 9 we consider the impact of a hypothetical school choice program which leads to 

the exit of 2.5 percent of students from each classroom, where all of these students were in the 

highest ability quintile. (Again we assume that the initial ability distribution was representative 

of the aggregate distribution.) The net effect is negative but quite small, and the highest-ability 

students experience very small gains. Again, any gains or losses experienced by the exiting 

students are not considered. The findings suggest that the effects of school choice programs on 

those “left behind” are likely to be small. 

VI. Summary and Conclusions 

This paper adds to a growing list of studies that use matched panel data in direct tests for peer 

effects in academic achievement. As in earlier studies, the panel data facilitate the identification 

of peer effects on academic achievement by enabling some degree of control for endogenous 

variation in peer groups. Unlike many earlier studies, we are able to place students within 
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classroom groups with specific teachers, and we observe each teacher with more than one group 

of students. Accordingly, ours is the first study to control simultaneously for unobserved 

heterogeneity in both student ability and in teacher effectiveness, among other unobserved 

effects, and the first to estimate classroom-level peer effects at the elementary, middle, and high-

school levels for the same school system and to compare these to grade-level effects. While not 

the first to do so, we add further value by adopting an innovative computational technique which 

aims both to facilitate fixed-effects estimation and to minimize measurement error in peer ability, 

and we estimate nonlinear peer effects models that allow for non-zero-sum policy implications.  

We find significant peer effects only at the classroom level and not at the general grade 

level, a result that emphasizes the importance of identifying the salient peer group. We also find 

that estimated peer effects are generally weaker when we control for unobserved inputs at the 

teacher-school level. This result indicates that teacher ability may vary systematically with peer 

ability conditional on individual student ability. Such co-movement is plausible in the context of 

student-teacher matching policies that result in a positive but imperfect correlation between 

students’ and teachers’ fixed abilities. These findings suggest that accessing random within-

student variation in peer ability will not guarantee unbiased estimates of peer effects when 

unobserved teacher effects are not also accounted for.  

We find that peer effects are not “one-size-fits-all,” but rather exhibit striking differences 

across students of different abilities and across different segments of the peer ability distribution. 

For example, the weakest students appear to experience the biggest positive impact from having 

higher quality peers. At the same time, however, such benefit appears to derive specifically from 

having peers in the highest quintile of the ability distribution. High ability students appear to 

experience the weakest spillovers from mean peer ability, but nonetheless may suffer sharp 

35 



losses due to an increase in the share of peers of very low ability. The sizable effects observed in 

the nonlinear models are obscured in the linear-in-means models, within which we find only very 

modest, but positive, spillovers from mean peer ability. Furthermore, comparisons of effects 

between math and reading scores, and across different schooling levels, also depend on whether 

linear or nonlinear models are employed.  

Considering the more nuanced results of the nonlinear models, the policy 

recommendations are not clear cut. For example, while low-ability students appear to benefit 

significantly from having top-quality peers, those peers will experience reductions in 

achievement gains from mixing with students of very low ability, reductions that may fully offset 

the weaker students’ gains. On the other hand, policies that mix middle and high ability students 

with each other are likely to strictly dominate those that segregate the top students in a separate 

track. While parents may prefer strict tracking, our results indicate that the highest-ability 

students actually benefit from mixing with students of middling ability. We also find that any 

negative peer effects from school choice programs are likely to be small. A choice program that 

attracted 2.5 percent students, all of them from the top ability quintile, would have only very 

small negative effects on the learning gains of lower ability student who remain behind.  
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Table 1.  
Mean Values for Florida Public School Students, 1999/2000–2003/2004   

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

 Math Reading 
  ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

 Elementary Middle High School Elementary Middle High School 
  (Grades 3-5) (Grades 6-8) (Grades 9-10) (Grades 3-5) (Grades 6-8) (Grades9-10) 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯   
 
Achievement Gain 20.246 14.398 11.772 16.656 15.965 -2.616 

Std. Dev. of Achiev. Gain 25.561 23.846 25.637 26.313 25.540 25.306 

Number of Schools Attended 1.040 1.038 1.025 1.040 1.034 1.027 

“Structural” Mover 0.011 0.227 0.315 0.011 0.193 0.403 

“Nonstructural” Mover 0.118 0.157 0.162 0.117 0.141 0.192 

Class Size 25.797 27.322 27.931 25.803 26.764 27.795 

Teacher Experience 10.601 9.882 11.217 10.611 9.685 10.476 

Mean Peer Discipline Incid.t-1 0.087 0.452 0.508 0.087 0.430 0.565 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

40 



Table 2.  
Estimates of the Determinants of Math and 

Reading Achievement Gains in Florida, 1999/2000–2003/2004 
 

______________________________________________________________________________ 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
_ _____________________________________________________________________________ 
 
Mean Peer Fixed Effect  0.0437** 0.0426** 0.0577** 0.0147** 0.0688** 0.0444** 
  (0.0079) (0.0153) (0.0106) (0.0036) (0.0123) (0.0131) 
 
Number of Schools  -0.3417 -0.7271 -1.0996* -1.0135** -0.1699 -0.5348 
 Attended (0.4189) (0.4717) (0.5492) (0.3390) (0.3788) (0.6349) 
 
Structural Mover  -1.3524 -0.5066 1.6544** 0.1704 -0.3706 -0.2692 
  (1.0721) (0.3755) (0.3825) (1.1266) (0.3281) (0.5335) 
 
Nonstructural Mover  0.6945** 0.0135 2.3373** 0.7627** 0.4940 0.0609 
  (0.2484) (0.2873) (0.3338) (0.2424) (0.2776) (0.5409) 
 
Class Size -0.1633** -0.0276 -0.0192 -0.0950** -0.0524** -0.0291 
  (0.0293) (0.0141) (0.0141) (0.0336) (0.0127) (0.0194) 
 
Teacher with 0 Years -1.3884 -0.5084 -0.9803 -1.3472 -0.1337 0.3947 
 of Experience (1.2883) (1.0217) (1.3099) (1.0615) (1.0481) (1.7568) 
 
Teacher with 1-2 Years -0.4849 0.7043 -0.1907 0.5584 0.2751 1.0727 
 of Experience (1.0377) (0.9035) (1.1180) (0.8400) (0.8690) (1.4678) 
 
Teacher with 3-4 Years 0.1368 0.8509 0.1465 0.6451 -0.2075 0.8317 
 of Experience (0.9527) (0.6812) (0.8885) (0.7824) (0.6975) (1.3659) 
 
Teacher with 5-9 Years -0.2999 1.0246* 0.1462 0.7859 -0.2151 -0.2048 
 of Experience (0.6265) (0.4700) (0.6751) (0.7237) (0.5828) (1.0451) 
 
______________________________________________________________________________ 
  
Number of Students 263,241  204,668 202,882  263,882  268,097 154,487 
Number of Observations 534,430  446,878 445,456  535,769 599,284 311,056  
______________________________________________________________________________ 

 
Models also include year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test.  
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Table 3. 
Estimates of the Determinants of Math and 

Reading Achievement Gains in Florida, 1999/2000–2003/2004 
(Minimum of 3 Observations per Student) 

______________________________________________________________________________ 
 
 Math Reading 
 
 

_________________________________ _________________________________ 

  Elementary/Middle   Elementary/Middle 
  (Grades 4-8)   (Grades 4-8)  
_ _____________________________________________________________________________ 
 
Mean Peer Fixed Effect   0.0444**   0.0078   
   (0.0119)   (0.0137)  
 
Number of Schools Attended   -0.8534**   -1.0307**   
   (0.3297)   (0.3203)  
 
Structural Mover   0.3820   0.0662   
   (0.3057)   (0.2748)  
 
Nonstructural Mover   0.6373*   0.6537**   
   (0.2505)   (0.2187)  
 
Class Size   -0.0572**   -0.0424**   
   (0.0129)   (0.0125)  
 
Teacher with 0 Years of   -0.4069   -0.1375   
 Experience  (0.8879)   (1.0519)  
 
Teacher with 1-2 Years of   0.5706   0.3266   
 Experience  (0.7541)   (0.8788)  
 
Teacher with 3-4 Years of   0.1740   0.4233   
 Experience  (0.5981)   (0.7653)  
 
Teacher with 5-9 Years of   0.0204   0.6858  
 Experience  (0.4514)   (0.4717)  
 
______________________________________________________________________________ 
  
Number of Students   159,664     189,711  
Number of Observations   508,763     609,758    
______________________________________________________________________________ 

 
Models also include year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test.  
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Table 4. 
Comparison of Estimated Effects of Mean Peer Fixed Effects on Math and Reading 

Achievement Gains in Florida From Models with Varying Peer Group Levels and Varying 
Teacher Controls, 1999/2000–2003/2004 

 
______________________________________________________________________________ 
 
 Math Reading 
 _________________________________ _________________________________ 
 
Peer Group/ Elementary Middle High School Elementary Middle High School 
Teacher Controls (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
_ _____________________________________________________________________________ 
 
Classroom Peers/  0.0437** 0.0426** 0.0577** 0.0147** 0.0688** 0.0444** 
 With Teacher FE (0.0079) (0.0153) (0.0106) (0.0036) (0.0123) (0.0131) 
______________________________________________________________________________ 
  
Classroom Peers/  0.1401 0.2280** 0.0256* 0.0723* 0.0903** 0.0678** 
 No Teacher FE (0.0993) (0.0412) (0.0118) (0.0364) (0.0207) (0.0205) 
______________________________________________________________________________ 
  
Grade Level Peers/  -0.0021 -0.0010 0.0152 -0.0009 -0.0004 0.0025 
 With Teacher FE (0.0015) (0.0014) (0.0137) (0.0009) (0.0007) (0.0017) 
______________________________________________________________________________ 
  
Number of Students 263,241  204,668 202,882  263,882  268,097 154,487 
Number of Observations 534,430  446,878 445,456  535,769 599,284 311,056  
______________________________________________________________________________ 

 
Models include number of schools attended, structural and nonstructural mover indicators, class size, teacher 
experience indicators, and year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test.  
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Table 5. 
Estimates of the Effects of Mean Classroom Peer Fixed Effects 

and the Effects of the Standard Deviation in Classroom Peer Effects on 
Math and Reading Achievement Gains in Florida, 1999/2000–2003/2004 

 
______________________________________________________________________________ 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8)(Grades 9-10)  
_ _____________________________________________________________________________ 
 
Mean Peer Fixed Effect  0.0157* 0.0424* 0.0679** 0.0140** 0.0184 0.0473** 
  (0.0069) (0.0191) (0.0095) (0.0053) (0.0151) (0.0115) 
 
Standard Deviation of  -0.0085 -0.0315* -0.0491** -0.0075 -0.0239 0.0062 
 Peer Fixed Effects (0.0077) (0.0139) (0.0109) (0.0081) (0.0168) (0.0093) 
______________________________________________________________________________ 
  
Number of Students 263,241 204,668 202,882 263,882  268,097 154,487 
Number of Observations 534,430 446,878 445,456 535,769  599,284  311,056  
______________________________________________________________________________ 

 
Models include number of schools attended, structural and nonstructural mover indicators, class size, teacher 
experience indicators, and year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test.  
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Table 6. 
Estimates of the Effect of Mean Classroom Peer Fixed Effects by Own Ability 

Level on Math and Reading Achievement Gains in Florida, 1999/2000–2003/2004 
 

______________________________________________________________________________ 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
_ _____________________________________________________________________________ 
 
Lowest Ability Quintile × 0.8207** 0.1052 0.0670 0.7703** 0.0796** 0.1011 
 Mean Peer Fixed Effect (0.0309) (0.0656) (0.0915) (0.0378) (0.0335) (0.0957) 
 
Middle 3 Ability Quintiles × 0.6081** 0.2138** 0.2121** 0.5043** 0.2038** 0.1922** 
 Mean Peer Fixed Effect (0.0239) (0.0186) (0.0211) (0.0238) (0.0164) (0.0203) 
 
Highest Ability Quintile ×  0.1005** 0.1423** -0.0752** -0.0108 0.0994** 0.1004 
 Mean Peer Fixed Effect (0.0018) (0.0294) (0.0170) (0.0309) (0.0222) (0.0809) 
 
______________________________________________________________________________ 
  
Number of Students 263,241  204,668 202,882 263,882 268,097 154,487 
Number of Observations 534,430  446,878 445,456  535,769  599,284  311,056 
______________________________________________________________________________ 

 
Models include number of schools attended, structural and nonstructural mover indicators, class size, teacher 
experience indicators, and year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test. 
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Table 7. 
Estimates of the Effects of Peer Ability Level by Own Ability Level 

on Math and Reading Achievement Gains in Florida, 1999/2000–2003/2004 
 

______________________________________________________________________________ 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
_ _____________________________________________________________________________ 
 
Lowest Quintile × Fraction of 20.540** 5.302** 5.894** 19.901** 6.513** 7.595** 
 Peers in Lowest Quintile  (1.791) (0.972) (0.948) (2.166) (1.116) (1.708) 
 
Lowest Quintile × Fraction of 40.556** 10.369** 13.423** 38.931** 11.262** 12.034** 
 Peers in Highest Quintile  (1.517) (1.374) (1.221) (1.499) (1.188) (1.704) 
 
Mid. 3 Quintiles × Fraction of -14.363** -4.114** -4.948** -14.916** -3.443** -2.288* 
 Peers in Lowest Quintile (1.406) (0.610) (0.665) (1.215) (0.6465) (1.000) 
 
Mid. 3 Quintiles × Fraction of 14.901** 3.207** 2.606** 11.367** 3.891** 2.393* 
 Peers in Highest Quintile (1.128) (0.663) (0.614) (1.283) (0.631) (0.970) 
 
Highest Quintile × Fraction of -39.542** -11.035** -20.494** -42.471** -8.304** -12.998** 
 Peers in Lowest Quintile  (1.686) (1.056) (1.265) (1.516) (1.298) (1.599) 
 
Highest Quintile × Fraction of -18.352** -3.914** -9.669** -28.880** -3.035* -7.248** 
 Peers in Highest Quintile  (2.201) (0.9700) (1.092) (1.701) (1.134) (1.727) 
 
______________________________________________________________________________ 
  
Number of Students 263,241  204,668 202,882 263,882 268,097 154,487 
Number of Observations 534,430  446,878 445,456  535,769  599,284  311,056 
______________________________________________________________________________ 

 
Models include number of schools attended, structural and nonstructural mover indicators, class size, teacher 
experience indicators, and year, grade level, and repeater-by-grade indicators. Bootstrapped standard errors are in 
parentheses. * indicates significance at the .05 level and ** indicates significance at the .01 level in a two-tailed test. 
 

46 



 
Table 8. 

Estimated Effects of Alternative Classroom Assignments 
on Student Math and Reading Achievement in Florida by 

Student Ability Ranking, 1999/2000–2003/2004 
 

______________________________________________________________________________ 
 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
______________________________________________________________________________  
 
 Change from (20 pct. in lowest quintile, 60 pct in middle 3 quintiles and 20 pct. in top quintile) 
 to (60 pct. in lowest quintile, 30 pct. in middle 3 quintiles and 10 pct. in highest quintile) 
_ _____________________________________________________________________________ 
 
Lowest Quintile 4.160 1.084 1.015 4.067 1.479 1.835 
 
Middle 3 Quintiles -7.235 -1.966 -2.240 -7.103 -1.766 -1.155 
 
Highest Quintile -13.982 -4.023 -7.231 -14.100 -3.018 -4.474 

______________________________________________________________________________  
 
 Change from (20 pct. in lowest quintile, 60 pct in middle 3 quintiles and 20 pct. in top quintile) 
 to (10 pct. in lowest quintile, 30 pct. in middle 3 quintiles and 60 pct. in highest quintile) 
_ _____________________________________________________________________________ 
 
Lowest Quintile 16.170 4.124 5.533 15.485 4.328 4.498 
 
Middle 3 Quintiles 7.397 1.694 1.537 6.038 1.901 1.186 
 
Highest Quintile -3.387 -0.462 -1.818 -7.305 -0.384 -1.599 

______________________________________________________________________________  
 
 Change from (20 pct. in lowest quintile, 60 pct in middle 3 quintiles and 20 pct. in top quintile) 
 to (5 pct. in lowest quintile, 90 pct. in middle 3 quintiles and 5 pct. in highest quintile) 
_ _____________________________________________________________________________ 
 
Lowest Quintile -9.164 -2.351 -2.898 -8.825 -2.666 -2.944 
 
Middle 3 Quintiles -0.081 0.136 0.351 0.532 -0.067 -0.016 
 
Highest Quintile 8.684 2.242 4.524 10.703 1.701 3.037 

______________________________________________________________________________ 
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Table 9. 
Policy Simulation: Estimated Effect of School Choice Program 

That Removes 2.5 Percent of Students, All from the Highest Quintile 
 

______________________________________________________________________________ 
 
 
 Math Reading 
 _________________________________ _________________________________ 
 
 Elementary Middle High School Elementary Middle High School 
 (Grades 4-5) (Grades 6-8) (Grades 9-10) (Grades 4-5) (Grades 6-8) (Grades9-10)  
_ _____________________________________________________________________________ 
 
Lowest Quintile -0.749 -0.191 -0.252 -0.718 -0.204 -0.215 
 
Middle 3 Quintiles -0.385 -0.088 -0.079 -0.313 -0.099 -0.062 
 
Highest Quintile 0.188 0.027 0.101 0.394 0.022 0.087 

_ _____________________________________________________________________________ 
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Appendix A 
Comparison of Estimation Methods Using Simulated Data 

The following table compares the performance of two different iterative estimation methods for 

estimating peer effects using simulated data. Method 1 is that which we use to estimate peer 

effects in the Florida data; Method 2 is its mathematically exact cousin. The methods are 

adapted, respectively, from Arcidiacono et al. (2005) and Arcidiacono et al. (2007). In the data, 

each student is randomly assigned a permanent ability value from the same normal distribution, a 

value that represents her fixed contribution to the gain score. Teachers are also assigned 

permanent ability values randomly from a normal distribution. Students are grouped into 

classrooms and assigned to a teacher according to rules that vary in the degree of randomness 

with respect to student and/or teacher ability. The data properties that we allow to vary are the 

following: 

(1) Degree of student selection: the number in this column refers to the ratio of the average 
within-classroom variance of student ability to the global variance of student ability. A 
number close to 1 indicates near-random assignment of students to classrooms, while a 
number close to zero indicates a high degree of selection of students into classrooms by 
ability level. Simulated values range from a low near 0.25 to high values very close to 1. In 
the Florida data, based on our estimated student fixed effects, these values range from a low 
of 0.49, for elementary school math, to a high of 0.78, for middle school reading. The 
remaining values were 0.59, 0.67, 0.69, and 0.72.  

 
(2) Degree of teacher selection: the number in this column refers to the correlation coefficient 

between classroom-average student ability and the ability of the teacher assigned to that 
classroom. A number close to zero indicates that teachers are assigned to classrooms 
randomly (and this can be done regardless of the degree of student selection), and larger 
numbers indicate that higher-ability teachers tend to get paired with student groups with high 
average ability. The more random is student classroom assignment, the harder it is to produce 
a high degree of teacher selection. 

 
(3) Noise level: the standard deviation of the time-varying idiosyncratic shock applied to the 

student gain scores.  
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The properties that are constant across estimations are the following: 

(1) The magnitude of peer effects, as indicated by the coefficient on mean peer ability. This 
number, denoted γ, is set at 0.15 universally. 

 
(2) The number of observations per student, which is set at 2. The two observations of a given 

student are associated with different grade levels, different years, and different teachers, each 
of which contributes a fixed effect to the gain score. We construct two cohorts of students, 
such that students can be in one of two different grade levels in each time period.  

 
(3) The number of observations per teacher, which is set at 2.  
 
(4) Tolerance set at .001. This means that the iterative process stops when the estimated peer 

effect changes by less than this absolute amount relative to the previous iteration’s estimate.  
 
(5) Standard errors obtained by bootstrapping; number of bootstrap replications set at 50.  
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Table A1. 

Comparison of Estimation Methods Using Simulated Data 
(True Peer Effect = 0.15) 

 
        

Student 
Selection 

Teacher 
Selection 

Std. Dev. of 
Shocks 

Method 1 
Estimated 
Peer effect  

Method 1 
(Standard 

Error) 

Method 2 
Estimated 

 Peer Effect 

Method 2 
(Standard 

Error)  
        

0.9948 -0.0262 0.123 0.1521 (0.0095) 0.1496 (0.0084)  
0.9750 0.0362 0.423 0.1828 (0.0262) 0.1940 (0.0331)  
0.9869 -0.0222 1.563 0.0927 (0.0617) 0.1843 (0.1418)  

        
0.7454 0.0650 0.123 0.1518 (0.0047) 0.1509 (0.0049)  
0.7447 0.5953 0.123 0.1469 (0.0053) 0.1444 (0.0051)  
0.7459 0.0423 0.423 0.1489 (0.0138) 0.1505 (0.0174)  
0.7491 0.6322 0.423 0.1712 (0.0200) 0.1721 (0.0181)  
0.7509 0.0623 1.563 0.1121 (0.0455) 0.1344 (0.0645)  
0.7451 0.5900 1.563 0.1310 (0.0531) 0.1651 (0.0949)  

        
0.4977 0.0137 0.123 0.1391 (0.0046) 0.1413 (0.0049)  
0.4965 0.6209 0.123 0.1386 (0.0052) 0.1398 (0.0057)  
0.4924 -0.0077 0.423 0.1368 (0.0169) 0.1402 (0.0199)  
0.4939 0.6619 0.423 0.1558 (0.0176) 0.1592 (0.0179)  
0.4970 -0.0309 1.563 0.0548 (0.0455) 0.0670 (0.0595)  
0.4951 0.6373 1.563 0.1121 (0.0562) 0.1456 (0.0921)  

        
0.2509 -0.0446 0.123 0.1171 (0.0085) 0.1217 (0.0089)  
0.2511 0.6724 0.123 -0.3207 (0.0062) 0.1165 (0.0073) * 
0.2495 0.1071 0.423 -0.0659 (0.0661) 0.0973 (0.0358) * 
0.2487 0.6301 0.423 -0.3087 (0.0081) 0.1197 (0.0326) * 
0.2486 0.0258 1.563 0.0946 (0.0754) 0.1709 (0.1755)  
0.2494 0.6533 1.563 0.1605 (0.0748) 0.3116 (0.1495)  

   
   

Notes: tolerance for estimation = 0.001; bootstrapped standard errors with 50 repetitions.   
   *signifies that the two coefficient estimates are significantly different from each other   
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